Определение. Пусть $A \subseteq \mathbb{N} \times \mathbb{N}$ — множество пар натуральных чисел. Его *проекцией* Пр A назовём множество таких x, что для некоторого y пара (x,y) входит в множество A.

- 1. Докажите, что проекция перечислимого множества перечислима.
- **2.** Пусть $f: \mathbb{N} \to \mathbb{N}$ вычислимая функция, множество $A \subseteq \mathbb{N}$ перечислимо. Докажите, что **a)** образ f(A) перечислим; **6)** прообраз $f^{-1}(A)$ перечислим.
- **3.** Пусть $A\subseteq \mathbb{N}\times \mathbb{N}$ перечислимо. Докажите, что существует вычислимая функция f, область определения которой Пр A, а график содержится в множестве A.
- **4.** Существует ли разрешимое множество D пар натуральных чисел, универсальное для разрешимых множеств (то есть для любого разрешимого $X \subseteq \mathbb{N}$ найдётся такое p, что $X = \{x : (p, x) \in D\}$)?
- **5.** Докажите, что бесконечное подмножество $\mathbb N$ разрешимо тогда и только тогда, когда оно является множеством значений всюду определённой возрастающей вычислимой функции $\mathbb N \to \mathbb N$.
- **6.** Найдите разрешимое множество $A\subseteq\mathbb{N}$ и вычислимую всюду определённую функцию $f\colon\mathbb{N}\to\mathbb{N}$ такие, что образ f(A) неразрешим.
- 7. Пусть функция f растёт быстрее любой вычислимой функции, то есть для любой вычислимой функции g найдётся такое N, что f(x) > g(x) для всех x > N, принадлежащих области определения g. Докажите, что $f(\mathbb{N})$ неразрешимо.
- **8. а)*** Докажите, что существует такое перечислимое множество $P \subset \mathbb{N}$, что дополнение к P бесконечно, но P пересекается с любым бесконечным перечислимым множеством. (Такое множество называется *простым*.)
- б) Докажите, что простое множество неразрешимо.

- **1.** Докажите, что непустое подмножество $\mathbb N$ разрешимо тогда и только тогда, когда оно является множеством значений всюду определённой неубывающей вычислимой функции $\mathbb N \to \mathbb N$.
- **2.** Пусть $f: \mathbb{N} \to \mathbb{N}$ всюду определённая вычислимая функция, множество $A \subseteq \mathbb{N}$ разрешимо. Докажите, что $f^{-1}(A)$ также разрешим.
- **3.** Найдите разрешимое множество $A\subseteq\mathbb{N}$ и вычислимую функцию $f\colon\mathbb{N}\to\mathbb{N}$ такие, что прообраз $f^{-1}(A)$ неразрешим.
- 4. Докажите, что во всяком бесконечном разрешимом множестве натуральных чисел есть перечислимое неразрешимое полмножество.
- **5.** Пусть X, Y перечислимые множества. Докажите, что найдутся такие непересекающиеся перечислимые множества $X' \subseteq X$ и $Y' \subseteq Y, X' \cap Y' = \emptyset$, что $X \cup Y = X' \cup Y'$.
- **6.** Пусть S разрешимое множество натуральных чисел. Множество D состоит из всех простых делителей множества S. Верно ли, что D разрешимо?
- 7. Докажите, что перечислимо множество программ, которые останавливаются хотя бы на одном входе. Более формально: пусть U универсальная вычислимая функция, а S множество тех p, для которых функция U(p,x) определена хотя бы при одном x. Тогда S перечислимо.