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Let Σ be a finite set of N points (including infinitely near points) in
the projective plane P2 over an algebraically closed field k. One asks about
possible structure of the group of biregular automorphisms of the blow-up
BΣ of this set. It was claimed by Coble (II,(7)) and later rigorously proven
by Gizatullin and Hirschowitz that for N ≥ 9 the group is trivial if Σ is
general enough. In the case when N ≤ 8, the blow-up BΣ is a del Pezzo
surface if Σ is general and possible automorphism groups were essentially
known since the 19th century in the case when k = C. We still do not know
the answer in case N = 7, 8 when k is of positive characteristic.

Apparently Arthur Coble was the first to ask in 1917 about special sets
Σ of N ≥ 9 points for which the group Aut(BΣ) could be an infinite dis-
crete group. He had never used the language of algebraic surfaces and the
question was stated in terms of the group of Cremona transformation. He
introduced the notion of Cremona congruent ordered sets of points and asked
for the existence of ordered set of points such that its congruence equivalence
class consists of finitely many projective equivalence classes. One can also
state this in terms of the Coble representation of the Weil group W (EN ) in
the group of birational automorphisms of (P2)n/PGL(3) and ask a question
about possible periodic orbits of this action. We are not going to say it more
precisely.

Coble was also the first to give examples of special sets Σ. The first
example is an Halphen set p 9 base points of an Halphen pencil of curves of
degree 3m with m-multiple points in Σ. By Bertini’s Theorem, each pencil
whose general member is a curve of geometric genus 1 can be reduced to such
a set by a Cremona transformation. The surface BΣ is a relatively minimal
rational elliptic surface and its group of automorphisms (for a general such
Σ) contains a subgroup of finite index in the infinite Coxeter group W (E9),
the affine Weil group of W (E8).
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The second series of examples of special sets σ given by Coble is the
subject of my talk. Here Σ is a set of 10 double points of a rational plane
curve of degree 6. The surface X = BΣ has the property that | −KX | = ∅
but |−2KX | 6= ∅. This property was taken for a definition of a Coble surface
in an unpublished work of Miyanishi in 1980. There exists a classification
of all projective algebraic surfaces with | −KX | = ∅ and | −mKX | 6= ∅ for
some m > 1, the surfaces which we will be interested and referred to as
Coble surface are of special kind: they are rational and | − 2KX | consists
of an isolated smooth curve (irreducible in the original case considered by
Coble). For a general Coble set of points Σ, Aut(BΣ) is of finite index in
W (E10). It was proven by Cantat and myself that Halphen or Coble sets
are the only ones in zero characteristic for which Aut(BΣ) could be of finite
index in W (EN ) (in characteristic p we can also blow up any general set
of N ≥ 10 points on a cuspidal cubic, the blow-ups are called Harbourne
surfaces).

Let | − 2KX | = {C} which we assume to be a smooth and hence consists
of m connected components C1, . . . , Cn. The adjunction formula gives that
each Ci

∼= P1 and C2
i = −4. In particular, K2

X = −n. So, #Σ = 9 + n.
If the characteristic p is equal to 0, the double cover of X ramified over C
is a K3 surface. The covering involution has n smooth rational curves as
its set of fixed points and hence, a generic such surface leads to surfaces
with a 2-elementary Picard lattice classified by Nikulin. It follows from this
classification that there are 10 different irreducible families of dimension
10− n
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As you see there are 10 families of such surfaces whose general member
has the given 2-elementary Picard lattice of the K3 cover. The number of
‘boundary components C1, . . . , Cn varies from 1 to 10 and the cardinalities
of the Coble sets Σ vary from 10 to 19, respectively.

Over C, it follows from the theory of periods of lattice polarized K3
surfaces that Coble surfaces lie in the boundary of the moduli space of En-
riques surfaces that complete this moduli space to a quotient of a symmet-
ric Hermitian domain of type IV by an arithmetic discrete group. In any
characteristic one can also obtain an Enriques surface as a deformation of
Q-Gorenstein surface obtained by blowing down the boundary components
C1, . . . , Cn.

So, being close relatives of Enriques surfaces it is natural extend the wide
study of automorphisms of Enriques surface to Coble surfaces.

As is well-known, a useful tool for study the automorphism group of any
algebraic surface X is to consider its natural representation

ρ : Aut(X)→ O(Num(X))

in the orthogonal group of its numerical lattice Pic(X)/num. For exam-
ple, for an Enrique surface Num(X) ∼= E10 is the unique (up to isometry)
unimodular even lattice of signature (1, 9). In the case of Coble surfaces
Num(X) ∼= I1,9+n, where I is a unique odd unimodular lattice of signature
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(1, 9+n). In the representation ρ, the image preserves the canonical class and
the nef cone Nef(X). In our case, it is also preserves the numerical classes
δi = [Ci] of boundary components. It was suggested by Mukai that a natural
target for the representation ρ is the lattice (which I call the Coble-Mukai
lattice) defined as follows.

CM(X) = {x ∈ Num(S)+Z[
1

2
δ1]+· · ·+Z[

1

2
δn] ⊂ Num(X)Q : x·δi = 0, i = 1, . . . , n}.

The lattice CM(X) contains the classes of smooth rational curves ((−2)-
curves) on X but does not contain classes of (−1)-curves. This makes it
possible to describe explicitly the intersection NefCM (X) of Nef(X) with
CM(X)R. For any two boundary components Ci, Cj and a (−1)-curve E
with E · Ci = E · Cj = 1, the class α = 1

2δi + 1
2δj + 2E belongs to CM(X).

It has self-intersection equal to −2 and intersects KX with zero. So, it is an
analogue of a (−2)-curve. Together with classes of (−2)-curves we call them
irreducible effective roots. Now one can describe Nef(X) as

NefCM(X) = {x ∈ CMR : x2 ≥ 0, x·α ≥ 0, for all irreducible effective roots}.

Of course, if n = 1, we have CM(X) = K⊥
X
∼= E10, so it coincides with the

Enriques lattice. It is not obvious, and the proof is not easy that

CM(X) ∼= E10

always!

Let me start to give examples where the computation of Aut(X) is known.

Example 0.1. Suppose n = 1, so we are dealing with original Coble sur-
faces. In 1919 Coble himself have shown that the the image of the group of
automorphisms of a general Coble surface in W (E10) ∼= O(E10/(±1) is a nor-
mal subgroup with quotient isomorphic to the orthogonal group O+(10,F2)
of the even quadratic space of dimension 10 over F2. It took 60 years to find
the same answer for the group of automorphisms of a complex Enriques sur-
face (Barth-Peters and Nikulin). The same result is true for a general Coble
surface in any characteristic and a geometric proof applies to both Coble and
Enriques surfaces using a lattice theoretical result (claimed by Coble without
a rigorous proof) that any isometry of the form idU + (−idE8) defined by an
orthogonal sum decomposition E10 = U ⊥ E8 are conjugate in W (E10) and
generate a normal subgroup W (E10)(2) with quotient O+(10,F2). These
involutions can be realized geometrically as the deck transformations of a
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double plane model of an Enriques or a Coble surface. A general Coble
surface is unnodal, i.e does not contain irreducible effective roots.

Example 0.2. Let V = V (F3) be a cubic surface in P3 over a field k of
characteristic p 6= 2, 3. Let H(V ) be its Hessian quartic surface given by the
determinant of the Hessian matrix of the cubic polynomial F3. We assume
that F3 is Sylvester non-degenerate, i.e. admits an expression as a sum of 5
linear forms. This linear polynomials embed S into P4 so that equation of
the image can be given in the form

4∑
i=0

aix
3
i =

4∑
i=0

xi = 0.

In these coordinates, the equation of the Hessian surface is

4∑
i=0

1

aixi
=

4∑
i=0

xi = 0.

The Cremona transformation T : (x0, . . . , x4) 7→ (1/a0x1, . . . , 1/a4x4) is a
birational involution that leaves the Hessian surface invariant. The Hessian
surface has at least 10 ordinary nodes Pijk given by the vertices of the
Sylvester pentahedron, the union of planes xi = x0 + · · · + x4 = 0. It has
10 lines `ij given by its edges The transformation T extends to a minimal

resolution H̃(V ) of H(V ) which is a K3 surface, it exchanges the exceptional
curves Eijk over the points Pijk with the proper transforms Lmn the edges
`km where {i, j, k} ∪ {l.m} = {0, . . . , 4}.

If V is a nonsingular cubic surface and p 6= 5, T has no fixed points on
X ′ and the quotient by the involution T is an Enriques surface. If V has k
nodes (it is known that k ∈ {1, 2, 3, 4}) , then these point lie on H(S) and

are isolated fixed points of T . The quotient of H̃(V ) becomes a Coble surface
with k boundary components. The nef cone NefCM(S) is a convex cone over
the the convex polytope in the Lobachevsky space associated with CM(S)R ∼=
R1,9 with orthonormal vectors of inner product (−2) with incidence matrix
defined by the following diagram
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The graph looks complicated but if you caefully you recognize that that
it is union of two graphs

One is the Petersen graph and another the anti-Petersen graph (the comple-
ment of the Petersen graph in the complete graph K(10).
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Here the vertices Uab correspond to orbits {Eijk, Llm} of T and among Eab

there are s effective irreducible roots, where s is the number of Eckardt points
on V . For example, if S is a Clebsch diagonal cubic surface with 10 Eckardt
point, then all vertices in the diagram are the classes of (−2)-curves, and
this implies that Aut(S) is finite, in fact, isomorphic to S5 = Aut(V ). This
is one of the 7 possible types of Enriques surface with finite automorphism
group. Another example is when V has 6 Eckardt points when we have a
one-dimensional family of such surfaces

1

x0
+

1

x1
+

1

x2
+

1

x3
+

t

x4
= 0,

where t = 1/16, 1/4 give Coble surfaces with 4, 1 boundaries, respectively,
and t = 1 gives the Enriques-Clebsch surface with automorphism group S5.
We prove with Daniel Allcock that the automorphism group is the same for
all t 6= 1 and isomorphic to the group

UC(4) oS4,

where UC(4) is the free product of 4 groups of order 2.

Since the set of boundary components is invariant with respect to Aut(S)
of a Coble surface, thee are natural questions: Is Aut(S)→ Aut(C) injective
and what is its image. We assume that n = 1, so that Aut(C) = PGL(2).
Coble conjectured that this homomorphism is injective for a general Coble
surface. It is still unknown whether this is true or not.

In the second example of Coble surfaces with n = 1 coming from one-
nodal cubic surfaces with 6 Eckardt points, we prove that the restriction
map is indeed injective and the image is the subgroup of PGL(2) naturally
isomorphic to the group of isometries of 3-dimensional Euclidean space gen-
erated by symmetries of a regular tetrahedron and the reflections across its
faces. It is not a discrete group in the Lie group of isometries of R3, however
it is isomorphic to a 3-adic lattice in PGL2(Q3).

Finally let us discuss the problem of classification of Coble surfaces with
finite automorphism group. The similar problem was solved for complex
surfaces by Kondo and Nikulin in early eighties. Recently, for p 6= 2, it was
solved by Gebhard Martin, and for p = 2 by Katsura-Kondo-Martin. Some
of the surfaces from the Kondo-Nikulin list are not realized in other cases,
and there are new types in characteristic 2. Recently, yet unpublished, the
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classification of Coble surfaces with finite automorphisms in characteristic
p 6= 2 was established by Kondo.

In the case p = 0, there are three classes of such surfaces, all lie on the
boundary of two 1-dimensional families of type I (two surfaces with n = 1, 2
and of type II (one with n = 1). Some other surfaces occur when we reduce
mod p an Enriques surface of type in

Example 0.3. Consider the example of an Enriques surface arising from
the Hessian surface of Clebsch diagonal cubic surface. When p = 3, the
standard Cremona involution has 5 fixed points on H(V ) with coordinates
(1, 2, 1, 1, 1), etc.. the quotient is a Coble surface from the fourth row of
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the Table. The nef cone has 10 nodes originated by (−2)-curves that form a
subdiagram isomorphic to the Petersen graph and ten other nodes originated
by other irreducible effective roots that form a subdiagram isomorphic to the
anti-Petersen graph (the complement of the Petersen graph in the complete
graph K(10)).

If p = 5, we get one fixed point on H(V ) with coordinates (1, 1, 1, 1, 1).

The quotient of H̃(V ) by the involution is a Coble surface with one boundary
component. It is in Row 5 in the Table.

Here is a new example (Type MI) that is not related to an Enriques
surface.

Example 0.4. Let X be the Fermat quartic surface

(0.1) x4
0 + x4

1 + x4
2 + x4

3 = 0.

The equation is defined by a Hermitian form over F9 and hence the unitary
group PGU(4,F9) acts on X as projective automorphisms. It is known that
X contains 112 lines. Let `, `′ be two skew lines on X. Let p ∈ X not lying
on ` ∪ `′. Then there exists a unique line `′′ in P3 containing p and meeting
`, `′. Let q ∈ X satisfying `′′ ∩ X = {p, q, `′′ ∩ `, `′′ ∩ `′}. By associating q
with p, we have a birational involution s`,`′ of X which can be extended to
a regular automorphism of X by the minimality of K3 surfaces. The fixed
point set of s`,`′ is the union of ` and `′, and the quotient surface V of X by
s`,`′ is a Coble surface with two boundary components.

Finally let us give an example in characteristic 2 that does not come as
a reduction mod 2 of an Enriques surface.

Example 0.5. let X be a Vinberg most algebraic K3 surface of the first
type. Recall that this surface is obtained as the double cover of the blow-
up S of 15 intersection points of ten lines on a quintic del Pezzo surface
branched along the proper transforms of the lines. The surface S is a Coble
surface with 10 boundary components.

The K3 cover X has 25 (−2)-curves with the intersection diagram
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It has also 5 non-effective classes c1, . . . , c5 of square-norm −4. The reflec-
tions with respect to the classes of the 25 (−2)-curves, 5 classes ci and the
deck transformations σ of X → S generate Aut(X) which is isomorphic to
a central extension of the group

UC(5) oS5.

by (σ). So the above group is the group of automorphisms of the Coble
surface S. The boundary of its nef cone are hyperplanes orthogonal to 25
classes of (−2)-curves from the following diagram (the pre-images of the
exceptional curves of the blow-up and the ramification curves of the double
cover). There are also 5 hyperplanes orthogonal to some non-effective classes
ci of norm-square −2. In characteristic 2, these classes become effective, and
the subgroup UC(5) disappears and Aut(S) becomes isomorphic to S5.


