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[We are working over the field C]

The unirationality problem: for a given rationally connected variety
X of dimension M , is there a rational dominant map

PM d:199K X?

The problem is very old and absolutely open: there are no known examples
of non-unirational rationally connected varieties.
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Some remarks:

• G.Fano in

Fano G., Sulle varietà algebriche a tre dimensioni aventi tutti i generi nulli,
Atti del Congresso Internazionale dei Matematici, Bologna, 3-10 Settembre
1928, Zanichelli Bologna (1931) 115–121,

insisted that a typical conic bundle over a rational surface is non-unirational.

• V.A.Iskovskikh in

Iskovskikh V.A., Birational automorphisms of three-dimensional algebraic
varieties, J. Soviet Math. 13 (1980), 815–868,

mentioned the unirationality problem several times:
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— in the Introduction he mentions that the problem is open for general
three-dimensional non-singular quartics and any non-singular sextic double
solids;

— in Chapter III, §2 he gives the explicit constructions of unirationality
of some special non-singular quartics V4 ⊂ P4 (due to Segre), of double
quadrics of index 1 (due to Roth), of complete intersections V2·3 ⊂ P5 (due
to Enriques);

— he completes §3 of Chapter III (and the chapter) by the following conjec-
ture for standard conic bundles V → P2: if the degree of the discriminant
curve ⊂ P2 is sufficiently high, then V is non-unirational.
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• There are plenty of explicit constructions of unirationality; e.g. a non-
singular (in fact, with the singular locus of a sufficiently high codimension)
hypersurface of a fixed degreem in PN is unirational forN sufficiently large,
see, for instance,

Conte, A., Murre, J. P. On a theorem of Morin on the unirationality of the
quartic fivefold, Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 132
(1998), 49–59.

Harris, J., Mazur, B., Pandharipande, R., Hypersurfaces of low degree,
Duke Math. J. 95 (1998), no. 1, 125–160.
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Consider non-singular hypersurfaces of index 1, V = VM+1 ⊂ PM+1:

• the expected answer is NO, at least for a Zariski general variety;

• in

Kollár, J., Low degree polynomial equations: arithmetic, geometry and
topology, European Congress of Mathematics, Vol. I (Budapest, 1996),
255–288, Progr. Math., 168, Birkhäuser, Basel, 1998.

János Kollár suggested that on V there are no rational surfaces through a
general point p ∈ V , which would imply non-unirationality;
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• which we can re-formulate as follows: the space of irreducible rational
curves of a given degree on V through the general point p does not contain a
rational curve; this conjecture motivated a deep study of spaces of rational
curves on Fano varieties, e.g.

Beheshti, R., Starr, J. M., Rational surfaces in index-one Fano hypersur-
faces. J. Algebraic Geom. 17 (2008), no. 2, 255-274,

Beheshti, R., Kumar, N. M., Spaces of rational curves on complete inter-
sections, Compos. Math. 149 (2013), no. 6, 1041-1060.

and other papers authored/co-authored by R. Beheshti;

• but the unirationality problem is still open.
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Main Theorem (of this talk). For a Zariski general non-singular hy-
persurface V = VM+1 ⊂ PM+1 of degree M + 1, where M > 5, there are no

non-trivial rational Galois covers X
d:199K V with an abelian Galois group of or-

der d > 2, where X is a rationally connected variety; in particular, there are
no rational maps X 99K V of degree 2 with X rationally connected.

(Here “Galois cover” means that C(V ) ⊂ C(X) is a Galois extension.) The
theorem motivates

Conjecture (on absolute rigidity of hypersurfaces). For a Zariski
general non-singular hypersurface V = VM+1 ⊂ PM+1 of degree M + 1, where
M > 5, every rational dominant map X 99K V , where X is a rationally con-
nected variety of dimension dim V , is a birational map.
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“Zariski general” has a very precise meaning in the Main Theorem above: let V
be a projective factorial variety with at most terminal singularities, such that
PicV = ZKV and the anticanonical class (−KV ) is ample (that is, a primitive
Fano variety). Then the Fano variety V is divisorially canonical if for every
effective divisor D ∼ −nKV , n > 1, the pair (V, 1nD) is canonical; that is to
say, for every exceptional prime divisor E over V the inequality

ord E D 6 n · a(E),

where a(E) is the discrepancy of E with respect to V , holds. (That is to say,
the global canonical threshold of V is > 1.)
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Theorem. (P., Izvestiya: Mathematics, 2005.) A Zariski general non-
singular hypersurface V = VM+1 ⊂ PM+1 is divisorially canonical for M > 5.

In the Main Theorem above “Zariski general” means “divisorially canonical”.

The Main Theorem can be generalized as follows: the claim is true for any
divisorially canonical primitive Fano variety satisfying some additional technical
condition (which is very easy to check for hypersurfaces).

Similarly, the conjecture on absolute rigidity of hypersurfaces generalizes to

Conjecture (on absolute rigidity). If V is a divisorially canonical Fano
variety, then every rational dominant map X 99K V , where X is a rationally
connected variety of dimension dim V , is a birational map.
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Proof. Since the image of a rationally connected variety is rationally con-
nected, we may assume that the Galois group of the original extension C(V ) ⊂
C(X) is a cyclic group of a prime order p > 2. We will consider the case p = 2.

Assume the converse: there is a rational map

X
2:199K V

with X RC. Desingularizing, we may assume that X is non-singular and

σ:X → V

is a morphism.
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A toy example: why there are no double covers (in the usual sense)
σ:X → V , branched over a non-singular divisor W ⊂ V with X RC?

Because the anticanonical class of V is too small: say if W ∼ nH, where H
is the hyperplane section of V , then we get

KX = σ∗KV +
1

2
σ∗W =

(
−1 +

n

2

)
σ∗H.

As X must be RC, we get n 6 1 so σ is either unramified or branched over a
hyperplane section; both cases clearly impossible.

Note: for hypersurfaces of higher index this construction works.

We will keep this toy example in mind.
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We say that a family L of irreducible projective curves on a quasi-projective
variety is free, if they sweep out a dense subset of that variety and for every
subvariety Y of codimension > 2 the subset

{L ∈ L |L ∩ Y ̸= ∅}

is a proper closed subfamily of the family L (that is to say, a curve L ∈ L of
general position does not intersect Y ). Let us fix a free family CX of non-singular
rational curves on X.

Our reference for free families of curves (existence and properties) is

Kollár J., Rational curves on algebraic varieties. Springer-Verlag, Berlin,
1996, Sections II.3 and IV.3.

13



More precisely, we have

f :P1 → CX ⊂ X

an isomorphism onto the image with f ∗TX ample ∼= ⊕OP1(αi) with all αi > 1.

So deformations of f are unobstructed and we can deform CX

• at any point p ∈ CX in any direction,

• at any p ̸= q on CX in independent directions,

so away from any Y ⊂ X of codimension 2 or higher.
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Using this principle, we get that we can assume in addition, that

• for every prime divisor ∆ ⊂ X, such that σ∗:TpX → Tσ(p)V is not an iso-
morphism for a point of general position p ∈ ∆ (this is true, in particular,
if codim (σ(∆) ⊂ V ) > 2), a general curve CX ∈ CX meets ∆ transversally
at points of general position,

• and for a general curve CX ∈ CX the morphism

σ|CX
:CX → σ(CX)

is birational.
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If necessary, we can shrink the family CX removing any proper closed subsets.

Now let CV = σ∗CX be the image of that family on V . The family CV is,
generally speaking, not free: if the σ-image of a prime divisor ∆ ⊂ X is of
codimension > 2, then the general curve CV ∈ CV meets σ(∆).

Technical fact 1. There is a birational morphism φ:V + → V , where V + is
a non-singular projective variety, such that the strict transform C+

V of the family
CV on V + is a free family of curves.

Proof. We blow up subvarieties of codimension > 2 intersecting all curves
in the family: first points, then curves, etc. �
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Technical fact 2. There is a non-singular quasi-projective variety UX, a
birational map φX :UX 99K X and a Zariski open subset U ⊂ V +, such that:

(i) the rational map

σ∗ = φ−1 ◦ σ ◦ φX :UX 99K V +

extends to a morphism σU :UX → V +, the image of which is U ,

(ii) the inequality
codim ((V + \ U) ⊂ V +) > 2

holds,

(iii) the map σU :UX → U is a double cover of U , branched over a non-
singular hypersurface W ⊂ U .

17



Essentially we remove some subsets of codimension > 2 from V + so that
over the complement we get a double cover in the usual sense, see the following
commutative diagram:

UX
φX99K X

σU ↓ ↓ σ

U ⊂ V + φ→ V.
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Proof. The field extension C(V ) ⊂ C(X) is generated by some element
ξ ∈ C(X), satisfying the equation

ξ2 − q = 0

for some rational function q ∈ C(V ) = C(V +). Using this fact of elementary
algebra, we can (birationally) realize X as a hypersurface in V + × P1, covering
V +, given by an equation, quadratic in the coordinates on P1.

Then we construct a locally trivial P1-bundle X over an open set U ⊂ V +

such that codim(V +\U) > 2 and X is birational to a non-singular hypersurface
UX ⊂ X which is a double cover of U branched over a non-singular (possibly
reducible) hypersurface in U . �

(We can remove any closed subset of codimension > 2 in V +!)
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Now we can complete the proof of Main Theorem. A general curve C ∈ C+
V

does not meet the closed set V + \ U and for that reason is contained entirely
in U . Therefore,

σ−1
U (C) = C1 ∪ C2

is a union of 2 distinct (projective!) rational curves on the quasi-projective
variety UX . The curves C1 and C2 are permuted by the Galois involution and
move in families of irreducible rational curves sweeping out UX , so that

(Ci ·KU) < 0,

i = 1, 2, where KU is the canonical class of the variety UX .
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Now

KU = σ∗
U

(
KV + +

1

2
W

)
,

where W ⊂ U is a non-singular hypersurface, over which the double cover σU
is branched. For the canonical class of V + we have the presentation

KV + = −φ∗H +
∑
i∈I

aiEi

where Ei ⊂ V + are all the prime φ-exceptional divisors and ai > 0 are their
discrepancies with respect to V (and H = −KV is the hyperplane section,
generating PicV ).
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Let us look at the branch divisor W : collecting separately the components
of the hypersurface W , which are divisorial on V and φ-exceptional, write

W = Wdiv +Wexc,

where Wdiv = nH −
∑

i∈I biEi with n > 1 and bi ∈ Z+ and Wexc =
∑

i∈I ciEi

with ci ∈ {0, 1}. We get the inequality

(Ci ·KU) = (C ·KV +) +
1

2
(C ·W ) < 0.

(Recall the toy example!)
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Assume that n > 2: adding [12n− 1](C ·KV +) 6 0, we get

n(C ·K+
V ) + (C ·W ) =

(
C ·
∑
i∈I

(nai − bi + ci)Ei

)
< 0,

so that for some i ∈ I we have

bi > nai + ci > n · ai

and the pair (V, 1nφ∗Wdiv) with φ∗Wdiv ∼ nH is not canonical, which contradicts
the divisorial canonicity of the variety V .

23



Therefore, n = 1 or 0. Both cases are easy to exclude: if n = 1, then φ∗Wdiv

is a hyperplane section of V , and it is easy to find a non-singular curve N ⊂ V
of odd degree such that N meets this section transversally outside the closed
set

φ(V + \ U) ∪ φ

(∪
i∈I

Ei

)
of codimension > 2. Then

σ−1(N) → N

is a double cover of a non-singular curve, branched over an odd number of
points, impossible.
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If n = 0, we can find a non-singular rational curve on V that does not meet
the same closed set

φ(V + \ U) ∪ φ

(∪
i∈I

Ei

)
of codimension > 2, and we get a non-ramified double cover of a non-singular
rational curve, also impossible.

The proof of Main Theorem is complete.

Divisorial canonicity has been shown for general members of many families
of Fano varieties, including mildly singular.

There are other important applications of the divisorial canonicity.
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One example is given in (P., Izvestiya: Mathematics, 2005): if F1, . . . , Fk

are divisorially canonical primitive Fano varieties, then every structure of a RC
fibre space on the direct product

F1 × F2 × · · · × Fk

is a projection onto a direct factor (a product of some Fi’s).

The other application is for Fano-Mori fibre spaces π:V → S over a non-
singular RC base S such that

— every fibre is a divisorially canonical Fano hypersurface with at most
quadratic singularities of rank > 8, satisfying a few additional conditions of
general position and such that

— V/S satisfies a global numerial condition similar to Sarkisov condition
for conic bundles or the K2-condition for fibrations over P1, see [P., Izvestiya:
Mathematics, 2015].
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Then every birational map χ:V 99K V ′ onto the total space V ′ of a RC fibre
space π′:V ′ → S ′ (both S ′ and a general fibre are RC) is fibre-wise (compatible
with the projections, that is to say, the fibres of π are mapped into the fibres
of π′).

Example. S = Pm with m 6 1
2(M−6)(M−5)−6 and V is a Zariski general

hypersurface of bidegree (M + 1, l) in PM+1 × Pm with

l > M + 1

M
(m+ 1),

then V/Pm satisfies all assumptions above so every structure of a RC fibre
space on V factors through the projection V → Pm. (Note that if l 6 m, then
V → PM+1 is a structure of a Fano-Mori fibre space not compatible with π, so
that the condition for l is close to an optimal one.)
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Thank you!
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