Openness of projectivity

János Kollár

Princeton University

May, 2021

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三三 - のへで

Main theorem I

Theorem

 $g: X \to \mathbb{D}$ proper, flat morphism of complex analytic spaces. Assume that

- X_0 is projective,
- **2** X_s has rational singularities for $s \neq 0$, and
- g is bimeromorphic to projective $g^{p}: X^{p} \to \mathbb{D}$.

Then g is projective over a smaller punctured disc $\mathbb{D}_{\epsilon}^{\circ} \subset \mathbb{D}$.

- $-X_0$ may have bad singularities,
- K3 surfaces show: (3) is needed,
- (2) is also needed (see later)
- puncture is needed (see later).

Previously known

```
Kodaira-Spencer, 1958:

X_0 smooth \Rightarrow X_0 Kähler \Rightarrow X_s Kähler

Moishezon, 1966

Kähler+ bimeromorphic to projective \Rightarrow projective.

Kollár-Mori, 1992

proof for X_0 terminal, Q-factorial, 3-fold

Villalobos-Paz, 2021

X_0 terminal, Q-factorial, n-fold
```

(日) (日) (日) (日) (日) (日) (日)

Example

$g:X ightarrow \mathbb{D}$ flat, proper morphism, such that,

- X_0 projective, 1 quotient sing. and ample K_{X_0} ,
- 2 X_s is smooth, non-algebraic, $\kappa(X_0) = 0$ for $s \neq 0$.
- Start: K3 surface $Y_0 \subset \mathbb{P}^3$ with a hyperplane section $C_0 \subset Y_0$: rational curve with 3 nodes.
- Blow up the nodes and contract C'_0 to get X_0 . singular point: $\mathbb{C}^2/\frac{1}{8}(1,1)$.
- Check: $K_{X_0} \sim E_1 + E_2 + E_3$ (exceptional curves) is ample.
- Deform Y_0 and the 3 points: $X_s = Y_s$ is (birationally) a K3. Can be non-algebraic.

Example (Atiyah, 1958)

 $g:X
ightarrow \mathbb{C}$ smooth, proper morphism, such that,

all fibers projective surfaces

2 g is not projective.

- $S_0:=(g=0)\subset \mathbb{P}^3_{\scriptscriptstyle X}$ and $S_1:=(f=0)\subset \mathbb{P}^3_{\scriptscriptstyle X}$ same degree.
- S_0 has only ordinary nodes, not in S_1
- S_1 is smooth, $\operatorname{Pic}(S_1) = \mathbb{Z}$
- Consider $X_m := (g t^m f = 0) \subset \mathbb{P}^3_{\mathsf{x}} \times \mathbb{C}^1_t$.
- Singularties: locally analytically: $xy + z^2 t^m = 0$. Claims:
 - X_m is bimeromorphic to a proper, smooth family of projective surfaces iff m is even, but
 - **2** X_m is **not** bimeromorphic to a smooth, projective family of surfaces.

Example

- $g: X \to S$ flat, proper
 - fibers normal surfaces, trivial K
 - **2** projective fibers: $\bigcup_{i=1}^{\infty} H_i \subset S$.
- Start: $E \subset \mathbb{P}^2$ smooth cubic.
- Blow up $m \ge 10$ points $p_i \in E$ and contract E'.
- $-S = E^m \setminus (\text{diagonals}).$
- projective $\Leftrightarrow \exists n_i > 0$ such that $\sum_i n_i[p_i] \sim \mathcal{O}(n)|_E$

Note: For m = 12: singularities = cones over plane cubics.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ○○○

Theorem

- $g: X \rightarrow S$ proper morphism of complex analytic spaces $S^* \subset S$ dense, Zariski open, g flat over it. Assume:
 - X_0 is projective for some $0 \in S$,
 - **2** X_s has rational singularities for $s \in S^*$, and
 - g is bimeromorphic to a projective morphism.

Then there are

• Zariski open $0 \in U \subset S$,

5 locally closed, Zariski stratification $U \cap S^* = \bigcup_i S_i$ such that each

 $g|_{X_i}: X_i := g^{-1}(S_i) \to S_i$ is projective.

Note: g need not be flat.

Open questions

Question

 $g: X \to \mathbb{D}$ proper morphism of complex analytic spaces. What if every fiber is bimeromorphic to a projective variety?

・ロト ・ 四ト ・ ヨト ・ ヨト ・ ヨ

200

Question

What happens in positive characteristic?

- shrink \mathbb{D} : X retracts to X_0 .
- X_0 projective, L ample: lift $c_1(L)$ to $\Theta \in H^2(X, \mathbb{Q})$
- Warning: not the Chern class of a holomorphic line bundle.

- shrink \mathbb{D} : X retracts to X_0 .
- X_0 projective, L ample: lift $c_1(L)$ to $\Theta \in H^2(X, \mathbb{Q})$
- Warning: not the Chern class of a holomorphic line bundle.

Step 1. Fix *s* very general. For every $p_s \in C_s \subset X_s$ $\exists p_0 \in C_0 \subset X_0$ such that $\operatorname{mult}_{p_0} C_0 \ge \operatorname{mult}_{p_s} C_s$.

 $\Rightarrow \Theta \cap [C_s] = \Theta \cap [C_0] \ge \epsilon \cdot \mathsf{mult}_{p_0} C_0 \ge \epsilon \cdot \mathsf{mult}_{p_s} C_s.$

- shrink \mathbb{D} : X retracts to X_0 .
- X_0 projective, L ample: lift $c_1(L)$ to $\Theta \in H^2(X, \mathbb{Q})$
- Warning: not the Chern class of a holomorphic line bundle.
- **Step 1.** Fix *s* very general. For every $p_s \in C_s \subset X_s$ $\exists p_0 \in C_0 \subset X_0$ such that $\operatorname{mult}_{p_0} C_0 \ge \operatorname{mult}_{p_s} C_s$.
 - $\Rightarrow \Theta \cap [C_s] = \Theta \cap [C_0] \ge \epsilon \cdot \mathsf{mult}_{p_0} C_0 \ge \epsilon \cdot \mathsf{mult}_{p_s} C_s.$

(日) (日) (日) (日) (日) (日) (日)

Step 2. Seshadri's criterion for cohomology classes: $\Rightarrow X_s$ is projective.

- shrink \mathbb{D} : X retracts to X_0 .
- X_0 projective, L ample: lift $c_1(L)$ to $\Theta \in H^2(X, \mathbb{Q})$
- Warning: not the Chern class of a holomorphic line bundle.
- **Step 1.** Fix *s* very general. For every $p_s \in C_s \subset X_s$ $\exists p_0 \in C_0 \subset X_0$ such that $\operatorname{mult}_{p_0} C_0 \ge \operatorname{mult}_{p_s} C_s$.

 $\Rightarrow \Theta \cap [C_s] = \Theta \cap [C_0] \ge \epsilon \cdot \mathsf{mult}_{p_0} C_0 \ge \epsilon \cdot \mathsf{mult}_{p_s} C_s.$

- **Step 2.** Seshadri's criterion for cohomology classes: $\Rightarrow X_s$ is projective.
- **Step 3.** Baire category argument: go from very general fibers to smaller disc.

Step 2 – Seshadri's criterion for cohomology classes

Theorem

X proper algebraic space over \mathbb{C} , rational singularities. X is projective $\Leftrightarrow \exists \Theta \in H^2(X, \mathbb{Q})$ and $\epsilon > 0$ such that

 $\Theta \cap [C] \geq \epsilon \cdot \mathsf{mult}_p C$

- 日本 (四本 (日本 (日本))

for every integral curve $C \subset X$ and every $p \in C$.

Step 2 – Seshadri's criterion for cohomology classes

Theorem

X proper algebraic space over \mathbb{C} , rational singularities. X is projective $\Leftrightarrow \exists \Theta \in H^2(X, \mathbb{Q})$ and $\epsilon > 0$ such that

 $\Theta \cap [C] \geq \epsilon \cdot \mathsf{mult}_p C$

for every integral curve $C \subset X$ and every $p \in C$.

Proof:

- \exists injection $N_1(X, \mathbb{Q}) \hookrightarrow H_2(X, \mathbb{Q})$ (proof on next slide)
- $\Theta \cap \in N_1(X, \mathbb{Q})^{\vee} = N^1(X, \mathbb{Q}).$
- There is L such that $c_1(L) \cap = \Theta \cap$ (in $N_1(X, \mathbb{Q})^{\vee}$ only!)
- L ample by Seshadri.

$N_1(X,\mathbb{Q}) \hookrightarrow H_2(X,\mathbb{Q})$ smooth, projective case

- natural surjection: $H_2^{\text{alg}}(X, \mathbb{Q}) \twoheadrightarrow N_1(X, \mathbb{Q})$ Need: $Z \stackrel{\text{num}}{=} 0$ then $Z \stackrel{\text{hom}}{=} 0$.
- X smooth, projective: Lefschetz (1, 1): rank $N_1(X, \mathbb{Q}) = \operatorname{rank} N^1(X, \mathbb{Q}) = \operatorname{rank} H^2_{\operatorname{alg}}(X, \mathbb{Q}).$

・ロ・・ (理・・ (用・・ (用・・)) の (の)

• Hard Lefschetz: rank $H^2_{alg}(X, \mathbb{Q}) = \operatorname{rank} H^{alg}_2(X, \mathbb{Q}).$

$N_1(X,\mathbb{Q}) \hookrightarrow H_2(X,\mathbb{Q})$ singular case

Need: $Z \stackrel{\text{num}}{=} 0$ then $Z \stackrel{\text{hom}}{=} 0$. • $\pi : Y \to X$ projective resolution. Lift Z to Z_Y (Q-coeffs). If $Z_Y \in N_1(Y/X, \mathbb{Q})$ then $Z \stackrel{\text{hom}}{=} 0$. Otherwise: $\exists L$ that is 0 on $N_1(Y/X, \mathbb{Q})$ but $(L \cdot Z_Y) \neq 0$.

• Lemma. If $R^1\pi_*\mathcal{O}_Y = 0$ then L^m descends to X.

Proof: Euclidean local on X: assume $\pi: V \to U \ni 0$ contractible.

exponential sequence: $0 \to \mathbb{Z} \to \mathcal{O}_V \to \mathcal{O}_V^{\times} \to 1$

push forward: $R^1\pi_*\mathcal{O}_V \to \operatorname{Pic}(V) \to R^2\pi_*\mathbb{Z}_V$

 $\operatorname{Pic}(V) \hookrightarrow H^2(V_0, \mathbb{Z}).$

Step 1 – Chow variety

Chow₁^m(X/S): { $p \in Z \subset X$: mult_p Z = m}.

Lemma

 $g: X \rightarrow S$ proper morphism, bimeromorphic to a projective. There are countably many diagrams

$$\begin{array}{rcl} \mathsf{C}_i & \to & \mathsf{W}_i \times_S X \\ \mathsf{w}_i \downarrow^{\uparrow} \sigma_i & & \\ \mathsf{W}_i & & \end{array}$$

- 2 the w_i proper, rel. dim. 1, flat over $W_i^{\circ} \subset W_i$,
- the fiber C_p over $p \in W_i^{\circ}$ has multiplicity m at $\sigma_i(p)$,
- W_i are irreducible, $\pi_i : W_i \to S$ projective, and
- informally: $\cup_i W_i^{\circ} \hookrightarrow Chow_1^m(X/S)$.

 $H_i := \pi_i(W_i) \subset S$: nowhere dense images.

Claim. X_s is projective for $s \in S \setminus \bigcup_{i \in I} H_i$: G_{δ} -set (= second category)

Proof. Pick $p_s \in C_s \subset X_s$. It is part of a

$$\begin{array}{rcl} C_i & \to & W_i \times_S X \\ w_i \downarrow \uparrow \sigma_i & \\ W_i & \end{array}$$

where $W_i \to S$ is dominant. So $(p_s \in C_s \subset X_s) \xrightarrow{\text{specializes}} (p_0 \in C_0 \subset X_0)$ and $\operatorname{mult}_{p_0} C_0 \ge \operatorname{mult}_{p_s} C_s.$

Step 3 – projective fibers I

Lemma

 $g: X \rightarrow S$ proper morphism of analytic spaces. Then

• either X is locally projective over a Z-dense, open S° ,

・ロト < 同ト < 三ト < 三ト ・ ○ への

• or $\{s \in S : X_s \text{ projective}\} \subset F_{\sigma}$ (= first category).

Note: F_{σ} : **locally** a countable union of Z-closed.

Example. image of line $L \subset \mathbb{C}^2$ in $\mathbb{C}^2/\mathbb{Z}^4$.

Step 3 – projective fibers II

- Zariski open + universal cover: R²g_{*}O_X is locally free and R²g_{*}Z_X is constant.
 exponential sequence ⇒ Pic(X)/Pic°(X) = ker[∂: R²g_{*}Z_X → R²g_{*}O_X] and Pic(X_s)/Pic°(X_s) = ker[∂: R²g_{*}Z_X|_s → R²g_{*}O_X]_s].
 Case 1. Some L ∈ Pic(X) ample on some X_s: ⇒ (1).
- **Case 2.** Ampleness comes from points where $\partial \Theta = 0$ for some $\Theta \in \Gamma(S, R^2g_*\mathbb{Z}_X)$: \Rightarrow (2).

・ロト < 同ト < 三ト < 三ト ・ ○ への

Baire category

If $\{H_i : i \in I\}$ and $\{G_j : j \in J\}$ are countably many nowhere dense subset of *S* then

 $S \setminus \bigcup_{i \in I} H_i \not\subset \bigcup_{j \in J} G_j.$

