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Main theorem I

Theorem
g : X → D proper, flat morphism of complex analytic spaces.
Assume that

1 X0 is projective,

2 Xs has rational singularities for s 6= 0, and

3 g is bimeromorphic to projective gp : X p → D.

Then g is projective over a smaller punctured disc D◦ε ⊂ D.

— X0 may have bad singularities,
— K3 surfaces show: (3) is needed,
— (2) is also needed (see later)
— puncture is needed (see later).



Previously known

Kodaira-Spencer, 1958:
X0 smooth ⇒ X0 Kähler ⇒ Xs Kähler

Moishezon, 1966
Kähler+ bimeromorphic to projective ⇒ projective.

Kollár-Mori, 1992
proof for X0 terminal, Q-factorial, 3-fold

Villalobos-Paz, 2021
X0 terminal, Q-factorial, n-fold



Example
g : X → D flat, proper morphism, such that,

1 X0 projective, 1 quotient sing. and ample KX0 ,

2 Xs is smooth, non-algebraic, κ(X0) = 0 for s 6= 0.

– Start: K3 surface Y0 ⊂ P3 with a hyperplane section
C0 ⊂ Y0: rational curve with 3 nodes.

– Blow up the nodes and contract C ′0 to get X0.
singular point: C2/1

8
(1, 1).

– Check: KX0 ∼ E1 + E2 + E3 (exceptional curves) is ample.
– Deform Y0 and the 3 points:
Xs = Ys is (birationally) a K3. Can be non-algebraic.



Example (Atiyah, 1958)

g : X → C smooth, proper morphism, such that,

1 all fibers projective surfaces

2 g is not projective.

– S0 := (g = 0) ⊂ P3
x and S1 := (f = 0) ⊂ P3

x same degree.
– S0 has only ordinary nodes, not in S1

– S1 is smooth, Pic(S1) = Z
– Consider Xm := (g − tmf = 0) ⊂ P3

x × C1
t .

– Singularties: locally analytically: xy + z2 − tm = 0.
Claims:

1 Xm is bimeromorphic to a proper, smooth family of
projective surfaces iff m is even, but

2 Xm is not bimeromorphic to a smooth, projective family
of surfaces.



Example
g : X → S flat, proper

1 fibers normal surfaces, trivial K

2 projective fibers: ∪∞i=1Hi ⊂ S .

– Start: E ⊂ P2 smooth cubic.
– Blow up m ≥ 10 points pi ∈ E and contract E ′.
– S = Em \ (diagonals).
– projective ⇔ ∃ ni > 0 such that

∑
i ni [pi ] ∼ O(n)|E

Note: For m = 12: singularities = cones over plane cubics.



Main theorem II

Theorem
g : X → S proper morphism of complex analytic spaces
S∗ ⊂ S dense, Zariski open, g flat over it. Assume:

1 X0 is projective for some 0 ∈ S ,

2 Xs has rational singularities for s ∈ S∗, and

3 g is bimeromorphic to a projective morphism.

Then there are

4 Zariski open 0 ∈ U ⊂ S ,

5 locally closed, Zariski stratification U ∩ S∗ = ∪iSi

such that each
g |Xi

: Xi := g−1(Si)→ Si is projective.

Note: g need not be flat.



Open questions

Question
g : X → D proper morphism of complex analytic spaces.
What if every fiber is bimeromorphic to a projective variety?

Question
What happens in positive characteristic?



Plan of proof of Main Theorem I

• shrink D: X retracts to X0.
• X0 projective, L ample: lift c1(L) to Θ ∈ H2(X ,Q)
• Warning: not the Chern class of a holomorphic line bundle.

Step 1. Fix s very general. For every ps ∈ Cs ⊂ Xs

∃ p0 ∈ C0 ⊂ X0 such that multp0 C0 ≥ multps Cs .

⇒ Θ ∩ [Cs ] = Θ ∩ [C0] ≥ ε ·multp0 C0 ≥ ε ·multps Cs .

Step 2. Seshadri’s criterion for cohomology classes:
⇒ Xs is projective.

Step 3. Baire category argument: go from
very general fibers to smaller disc.
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Step 2 – Seshadri’s criterion for cohomology classes

Theorem
X proper algebraic space over C, rational singularities.
X is projective ⇔ ∃ Θ ∈ H2

(
X ,Q

)
and ε > 0 such that

Θ ∩ [C ] ≥ ε ·multp C

for every integral curve C ⊂ X and every p ∈ C .

Proof:
• ∃ injection N1(X ,Q) ↪→ H2(X ,Q) (proof on next slide)
• Θ∩ ∈ N1(X ,Q)∨ = N1(X ,Q).
• There is L such that c1(L)∩ = Θ∩ (in N1(X ,Q)∨ only!)
• L ample by Seshadri.
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N1(X ,Q) ↪→ H2(X ,Q) smooth, projective case

• natural surjection: Halg
2 (X ,Q) � N1(X ,Q)

Need: Z
num

= 0 then Z
hom

= 0.
• X smooth, projective: Lefschetz (1, 1):

rankN1(X ,Q) = rankN1(X ,Q) = rankH2
alg(X ,Q).

• Hard Lefschetz: rankH2
alg(X ,Q) = rankHalg

2 (X ,Q).



N1(X ,Q) ↪→ H2(X ,Q) singular case

Need: Z
num

= 0 then Z
hom

= 0.
• π : Y → X projective resolution. Lift Z to ZY (Q-coeffs).

If ZY ∈ N1(Y /X ,Q) then Z
hom

= 0.
Otherwise: ∃ L that is 0 on N1(Y /X ,Q) but (L · ZY ) 6= 0.

• Lemma. If R1π∗OY = 0 then Lm descends to X .

Proof: Euclidean local on X :
assume π : V → U 3 0 contractible.

exponential sequence: 0→ Z→ OV → O×V → 1

push forward: R1π∗OV → Pic(V )→ R2π∗ZV

Pic(V ) ↪→ H2(V0,Z).



Step 1 – Chow variety

Chowm
1 (X/S): {p ∈ Z ⊂ X : multp Z = m}.

Lemma

g : X → S proper morphism, bimeromorphic to a projective.
There are countably many diagrams

Ci → Wi ×S X
wi ↓↑ σi

Wi

2 the wi proper, rel. dim. 1, flat over W ◦
i ⊂ Wi ,

3 the fiber Cp over p ∈ W ◦
i has multiplicity m at σi(p),

4 Wi are irreducible, πi : Wi → S projective, and

5 informally: ∪iW ◦
i ↪→ Chowm

1 (X/S).



Hi := πi(Wi) ⊂ S : nowhere dense images.

Claim. Xs is projective for
s ∈ S \ ∪i∈IHi : Gδ-set (= second category)

Proof. Pick ps ∈ Cs ⊂ Xs . It is part of a

Ci → Wi ×S X
wi ↓↑ σi

Wi

where Wi → S is dominant. So

(ps ∈ Cs ⊂ Xs)
specializes−→ (p0 ∈ C0 ⊂ X0) and

multp0 C0 ≥ multps Cs .



Step 3 – projective fibers I

Lemma
g : X → S proper morphism of analytic spaces. Then

1 either X is locally projective over a Z-dense, open S◦,

2 or {s ∈ S : Xs projective} ⊂ Fσ (= first category).

Note: Fσ: locally a countable union of Z-closed.

Example. image of line L ⊂ C2 in C2/Z4.



Step 3 – projective fibers II

• Zariski open + universal cover:
R2g∗OX is locally free and R2g∗ZX is constant.

• exponential sequence ⇒
Pic(X )/Pic◦(X ) = ker

[
∂ : R2g∗ZX → R2g∗OX

]
and

Pic(Xs)/Pic◦(Xs) = ker
[
∂ : R2g∗ZX |s → R2g∗OX |s

]
.

Case 1. Some L ∈ Pic(X ) ample on some Xs : ⇒ (1).

Case 2. Ampleness comes from points where ∂Θ = 0
for some Θ ∈ Γ(S ,R2g∗ZX ): ⇒ (2).



Baire category

If {Hi : i ∈ I} and {Gj : j ∈ J} are countably many
nowhere dense subset of S then

S \ ∪i∈IHi 6⊂ ∪j∈JGj .










