Questions posed after the first part of the "Subgroups of Cremona" workshop in University of Edinburgh, UK

March 30, 2010

1 Questions posed by I.Cheltsov

Question 1.1 Describe the conjugacy classes of finite simple non-abelian subgroups in $Cr_3(\mathbb{C})$. There are only the following possibilities for such groups:

1. A_5 , A_6 , $PSL_2(7)$ (this is the hard case)

2. A_7 , $SL_2(8)$, $PSp_4(3)$ (the answer is known for the last two)

For A_7 , have

$$\left\{\sum x_i = 0, \ \sum x_i^2 = 0, \ \sum x_i^3 = 0\right\} \subset \mathbb{P}^6$$

Is it rational? If not, A_7 would have a unique conjugacy class in $Cr_3(\mathbb{C})$.

Question 1.2 What are the normalizers and centralizers of groups from question 1.1 in $Cr_3(\mathbb{C})$?

Question 1.3 What are the conjugacy classes of "small" groups in the list above (question 1.1, (1))?

Question 1.4 Describe embeddings of "small" groups in the list above (question 1.1, (1)) into Bir(X), where X is a rationally connected 3-fold.

Question 1.5 Let $f \to X$; $S \mapsto be a standard G$ -conic bundle, X a rationallyconnected 3-fold. (X is smooth, $rk \operatorname{Pic}(X/S)^G = 1$, etc. — very good conic bundle). **True or False:** X is always rational for G from (question 1.1, (1))? Subquestion: same question, but assuming also that $rk \operatorname{Pic}(X/S) = 1$.

Question 1.6 \mathbb{P}^3/G — study rationality for $G \in PGL_4(\mathbb{C})$ finite. At least, **True or False:** \mathbb{P}^3/G rational.

Question 1.7 $g \in Cr_n(\mathbb{C}), g \notin PGL_n(\mathbb{C})$. What is the prime order of g? If $ord(g) \gg 0$, is g linearisable?

2 Questions posed by J.P.Serre

Question 2.1 True or False: Let K/k be an extension of fields of finite type, k small field (as defined in the lecture). Then the finite tame subgroups (of order prime to char(k)) of Aut_k(K) have bounded order. Especially for $k = \mathbb{Q}$.

This is now known to be false in general. The question is open if k is assumed to be a number field.

Question 2.2 Same as question 2.1, assuming char(k) = 0 and tr.deg(K) = 2.

Question 2.3 Is it possible to introduce such topology on $Cr_2(\mathbb{C})$ that is compatible in $PGL_3(\mathbb{C})$ with $PGL_2(\mathbb{C}) \times PGL_2(\mathbb{C})$?

The conjectured answer is "No".

Question 2.4 If char(k) = p > 0, then $Cr_n(k) \not \ge g$ with $ord(g) = p^{n+1}$.

3 Questions posed by S.Lamy

Question 3.1 In $Cr_2(\mathbb{C})$, is there a criterion to decide that g is not conjugate to g^{-1} ? (or g^n not conjugate to g^m , for $n, m \in \mathbb{Z}$) Does there exist $g \in Cr_2(\mathbb{C})$, hyperbolic, such that g is not conjugate to g^{-1} .

Question 3.2 Does there exist a smooth cubic surface S in \mathbb{P}^3 and an element $g \in Cr_3(\mathbb{C}) \setminus PGL_4(\mathbb{C})$, such that $g \in Aut(\mathbb{P}^3 \setminus S)$? (This question is due to Gizatulin)

4 Questions posed by S.Galkin

Question 4.1 Take Symp := SCr₂. True or False: Symp is generated by $(k^*)^2$, SL₂(\mathbb{Z}) and $P: (x, y) \mapsto (y, \frac{1+y}{x})$. (Usnich conjecture)

Question 4.2 Take $H := \langle P, SL_2(\mathbb{Z}) \rangle$, where

$$I = \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right), \ C = \left(\begin{array}{cc} 1 & 0 \\ -1 & 1 \end{array}\right)$$

with $I^4 = C^3 = [I^2, C] = 1$, $P^5 = 1$, PCP = I (take $k = \mathbb{C}$). Is H presented by these?

Question 4.3 What are the finite subgroups (normal subgroups, etc.) of H (from question 4.2)? Is there an element of order 7?

Question 4.4 Is H hyperbolic?

Question 4.5 Let w be a Laurent polynomial. Assume we know that

$$J_{w}(t) = \int \frac{1}{1 - tw} \frac{dx}{x} \wedge \frac{dy}{y} = J_{w_{0}}(t)$$

for $w_0 = x + y + \frac{1}{xy}$. Is it true that $\mathcal{N}(w)$ is an affine transformation of $\Delta\left(\mathbb{P}\left(x^2, y^2, z^2\right)\right)$ for Markov triple?

Question 4.6 What are the hierarchies of special birational transform (???) of

- 1. $\mathbb{P}^3 (w = x + y + z + \frac{1}{xyz})$
- 2. del Pezzo surface S of rk Pic(S) > 1

5 Questions posed by A.Veselov

Question 5.1 Describe $f \in Cr_2(\mathbb{C})$ with non-trivial symmetry $g \in Cr_2(\mathbb{C})$, i.e. such that $g \circ f = f \circ g$ and $g^m \neq f^n$ (~ description of $\mathbb{Z} \oplus \mathbb{Z}$ in $Cr_2(\mathbb{C})$)

Question 5.2 Describe Yang-Baxter maps (birational) $R : \mathbb{P}^1_{\mathbb{C}} \times \mathbb{P}^1_{\mathbb{C}} \dashrightarrow \mathbb{P}^1_{\mathbb{C}} \times \mathbb{P}^1_{\mathbb{C}}$ satisfying $R_{12}R_{13}R_{23} = R_{23}R_{13}R_{12}$, where R_{ij} is the map R from the (i, j)-th factor of $\mathbb{P}^1_{\mathbb{C}} \times \mathbb{P}^1_{\mathbb{C}} \times \mathbb{P}^1_{\mathbb{C}}$ to itself and identity on the third factor.

The expected answer is: take

and let $R \max (A, B)$ to (C, D). Is this the only way to obtain R?

6 Questions posed by G.Brown

Question 6.1 Does $PSL_2(13)$ act on a rational Fano 4-fold? OR: Is it embeddable in Cr_4 ?

7 Questions posed by I.Karzhemarov

Question 7.1 What is $Aut(\mathbb{H}(x,y))$?

Question 7.2 True or False: $Aut(\mathbb{H}(x)) = PGL_2(\mathbb{H})$

8 Questions posed by Yu.Prokhorov

Question 8.1 Work in Cr_2 . How many hyperbolic elements does it contain? For example, study embeddings of $\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}$ in Cr_2 . Is there a bound on r?

Is it contained (up to conjugation) in the deJonquieres group for large r?

Question 8.2 Are there $n \neq m$ with $Cr_n(k) \cong Cr_m(k)$?

Question 8.3 Is $Cr_n(\mathbb{C})$ $(n \geq 3)$ Jordan? (This question is due to Popov, Serre).

This question relates to the Borisov–Alexeev conjecture.

Question 8.4 (Stable conjugacy) $Cr_2(k) \hookrightarrow Cr_n(k)$ $(n \ge 3)$. G, G' (finite) subgroups, not conjugate in $Cr_2(k)$. Are they conjugate in $Cr_n(k)$? Classify finite subgroups in Cremona group (e.g. Cr_2 , Cr_3) up to this "stable conjugacy".

9 Questions posed by J.Blanc

Question 9.1 Assume k is an algebraically closed field. Is $Cr_2(k)$ an algebraic group of infinite dimension in the Shafarevich's sence? In other words, is it possible to write

$$Cr_2(k) = \bigcup_{i=1}^{\infty} U_i$$

where U_i are algebraic varieties, U_i is closed in U_{i+1} $\forall i$, and the structure is compatible with the group action.

Prof. Serre suggests that the answer is "No"

Question 9.2 Is $\{g \in Cr_2 : \deg g \leq 2\}$ an irreducible algebraic variety?

Prof. Serre suggests that it is not.

Question 9.3 Are the two natural structures of $\{f \in Cr_2(k) : \deg f = 2\}$ and $PGL_3(\mathbb{C})$ compatible?

Question 9.4 Is $Cr_n(k)$ simple for $n \ge 3$? (even without Zariski topology)

Question 9.5 Give conjugacy classes of elements of finite order (e.g. 2, large prime, etc.) of $Cr_3(\mathbb{C})$ (over \mathbb{Q} , etc).

Question 9.6 What are generators of $Cr_3(\mathbb{C})$. Find some other reasonable formulation for this question. For $n \geq 3$, is $Cr_n(\mathbb{C})$ generated by $Aut(\mathbb{P}^n_{\mathbb{C}})$ and $Cr_{n-1}(\mathbb{C}) \subset Bir(\mathbb{P}^1 \times \mathbb{P}^{n-1}, \pi_2)$ (in a natural way)?

The conjectured answer to the last part is "No".

Problems for the Edinburgh workshop on Cremona groups, March 2010

Problem 1. Prove (or disprove) that there does not exist a topology on $G = Cr_2(\mathbf{C})$ with the following properties :

a) It is compatible with the group structure of G; in particular, the multiplication map $G \times G \to G$ is continuous.

b) Its restriction to $\mathbf{PGL}_3(\mathbf{C})$ (resp. to $\mathbf{PGL}_2(\mathbf{C}) \times \mathbf{PGL}_2(\mathbf{C})$) is the usual topology of that group.

Problem 2. Does there exist a non trivial central extension of $Cr_2(C)$, for instance with a center of order 2?

Problem 3. Let us say that a group G has property (BFS) ("bounded finite subgroups ") if the finite subgroups of G have bounded order.

Let K be a field of characteristic 0 which is finitely generated over \mathbf{Q} . Prove (or disprove) that the group Aut K has property (BFS).

Remarks on Problem 3.

1. Let k be a field which is a finitely generated extension of \mathbf{Q} and let V be a projective smooth k-scheme. The group $\operatorname{Aut}_k(V)$ has property (BFS).

[By Néron and Weil, the group Pic V is a finitely generated **Z**-module, hence its group of automorphisms has property (BFS). A finite subgroup of $\operatorname{Aut}_k(V)$ which acts trivially on Pic V is isomorphic to a subgroup of some $\operatorname{PGL}_n(k)$ for some integer n depending only on V; the group $\operatorname{PGL}_n(k)$ has property (BFS).]

2. Problem 3 has a positive answer when the transcendence degree of K over \mathbf{Q} is ≤ 2 .

[Use the birational classification of surfaces : the case where the Kodaira dimension is > 0 is easy; the case where there is a unique minimal model follows from Remark 1; the case of a rational field is standard.]

J-P.Serre, April 3, 2010

Problems for the Edinburgh workshop on Cremona groups, March 2010

Problem 1. Prove (or disprove) that there does not exist a topology on $G = Cr_2(\mathbf{C})$ with the following properties :

a) It is compatible with the group structure of G; in particular, the multiplication map $G \times G \to G$ is continuous.

b) Its restriction to $\mathbf{PGL}_3(\mathbf{C})$ (resp. to $\mathbf{PGL}_2(\mathbf{C}) \times \mathbf{PGL}_2(\mathbf{C})$) is the usual topology of that group.

Problem 2. Does there exist a non trivial central extension of $Cr_2(\mathbf{C})$, for instance with a center of order 2?

Problem 3. Let us say that a group G has property (BFS) (" bounded finite subgroups ") if the finite subgroups of G have bounded order.

Let K be a field of characteristic 0 which is finitely generated over \mathbf{Q} . Prove (or disprove) that the group Aut K has property (*BFS*).

Remarks on Problem 3.

1. Let k be a field which is a finitely generated extension of \mathbf{Q} and let V be a projective smooth k-scheme. The group $\operatorname{Aut}_k(V)$ has property (BFS).

[By Néron and Weil, the group Pic V is a finitely generated **Z**-module, hence its group of automorphisms has property (BFS). A finite subgroup of $\operatorname{Aut}_k(V)$ which acts trivially on Pic V is isomorphic to a subgroup of some $\operatorname{PGL}_n(k)$ for some integer n depending only on V; the group $\operatorname{PGL}_n(k)$ has property (BFS).]

2. Problem 3 has a positive answer when the transcendence degree of K over \mathbf{Q} is ≤ 2 .

[Use the birational classification of surfaces : the case where the Kodaira dimension is > 0 is easy; the case where there is a unique minimal model follows from Remark 1; the case of a rational field is standard.]

J-P.Serre, April 3, 2010