Errata of Iskovskikh, V. A. & Prokhorov, Y. Fano varieties. Algebraic geometry. V. Springer, 1999.

- p. 23, Definition 2.1.1. It should be " $-(K_X+B)$ ample" instead of " K_X+B ample"
- p. 33, 2.1.16 (i), it should be "3.3.1 (i)" instead of "3.1.6 (i)"
- p. 34, third line, 2.1.16 (iii). "by a quartic" instead of "by a quadric"
- p. 39, 2.2.14 (ii) b). $E \cdot \sigma^* Z = f \cdot Z = 0 \longmapsto E \cdot \sigma^* Z = f \cdot \sigma^* Z = 0$
- p. 46, 2.3.16. ref2.3.15 \longrightarrow 2.3.15.
- p. 48. nonsingular along C; $-K_X = C' + (a+2)F' \longmapsto$ nonsingular along C; $-K_{\tilde{X}} = C' + (a+2)F'$.
- p. 48, line -10. $-K_X = C' + (a+2)F' \longrightarrow -K_{\tilde{X}} = C' + (a+2)F'$
- p. 48, line 13. surface of degree $m+1 \longrightarrow \text{surface of degree } m$
- p. 48. Remark. The surface C' is normal.

Proof. Since $C = C' \cap E$,

$$N_{C/\tilde{X}} = N_{C/C'} \oplus N_{C/E}.$$

Hence $N_{C'/\tilde{X}}|_{C} \simeq N_{C/E}$ is negative. In particular, C' is not nef. Note that $-K_{\tilde{X}}$ is nef and the Mori cone is polyhedral and generated by contractible extremal rays. So there is an extremal ray R such that $C' \cdot R < 0$. Since C' is nef over W, R is K-negative. By the classification of extremal rays C' is normal.

- p. 55. Remark 3.3.2 (ii). If $d \ge 5$ and $d \ne 6$, then
- p. 61. THe \longrightarrow the.
- p. 68, 4.1.5, (i). see $(1.3.1) \mapsto see (1.4.3)$.
- p. 69, Type E1. $r \cdot \deg Y \longmapsto r^3 \cdot \deg Y$.
- p. 70, Proposition 4.1.12 (ii). if g = 5 and \underline{X} is nonsingular, then
- p. 90, 4.4.11 (v). $\varphi: \tilde{X}^+ \to \mathbb{P}^2 \longmapsto \varphi: \tilde{X}^+ \to \mathbb{P}^1$.
- p. 90, 4.4.11 (vii). $D \sim 2(-K_{\widetilde{X}^+} 3E^+) \longmapsto D \sim 2(-K_{\widetilde{X}^+}) 3E^+$.
- p. 91, 4.4.12 (ix). Missing comma.
- p. 92, Lemma 4.4.14 (ii). $y \to R' \longmapsto y \in R'$
- p. 99, 4.5.8 (i). $Y = X = X_{16} \subset \mathbb{P}^{10} \longmapsto Y = Y_{10} \subset \mathbb{P}^7$
- p. 99, 4.5.8 (ii). $Y = X = Y_{16} \longmapsto Y = Y_5$
- p. 99, 4.5.8 (v). Delete "two-dimensional fibers".
- p. 102. some line $Z \mapsto$ this line Z.
- p. 102, 4.6.3 (v). Missing comma.
- p. 112. satisfying the condition $F_d(x, y, z) = \sum a_i f_i^n \longrightarrow \text{satisfying the condition } F_d(x, y, z) = \sum a_i f_i^d$.
- \bullet p. 129, line 5. Kawamata (1992b) \longmapsto Kawamata (1992a)

- p. 129, with the missing case the number of classes with $\rho = 4$ becomes 13
- p. 133, Lemma 7.1.9. reduced \longrightarrow reducible
- p. 132, Lemma 7.1.10. $b_2(X) b_2(X) \longmapsto b_2(X) b_2(S)$
- p. 144, 7.2.2 (ii) c), X is $\mathbb{P}_{\mathbb{P}^r}(\mathscr{E})$ where $\mathscr{E} = \mathscr{O}_{\mathbb{P}^r}(2) \oplus \mathscr{O}_{\mathbb{P}^r}(1)^{\oplus (r-1)}$ instead of $\mathbb{P}_{\mathbb{P}^2}(\mathscr{E})$ where $\mathscr{E} = (\mathscr{O}_{\mathbb{P}^2}(2) \oplus \mathscr{O}_{\mathbb{P}^2}(1))^{\oplus (r-1)}$
- p. 158, lines 20-25.

Moreover, varieties of types (4), (6), (7), and (9) are also standard conic bundles with respect to the natural projections:

- (4): $X \to \mathbb{P}^2$ with the degeneration curve of degree 8;
- (6): $X \to \mathbb{P}^2$ with the degeneration curve of degree 6;
- (7): $X \to \mathbb{P}^2$ with the degeneration curve of degree 6;
- (9): $X \to \mathbb{P}^1 \times \mathbb{P}^1$ with the degeneration curve of bidegree (4, 4).
- p. 164, line 22. Clemens (1991) \longrightarrow Clemens (1983a)
- p. 164, 8.2.2, (4). $X = V_6 \subset \mathbb{P}^6 \longmapsto X = V_8 \subset \mathbb{P}^6$.
- p. 177, (iv). It seems that X should be sufficiently general [Iskovskikh-Pukhlikov 1996].
- p. 186, line 4. Roth (1949) \longrightarrow Roth (1955).
- p. 186, line 7. Ramanujam (1972) \longrightarrow Ramero (1990).
- p. 215, case $r=2, -K_X^3=8$. Description is missing. It should be $X=X_6\subset \mathbb{P}(1,1,1,2,3)$.
- p. 215, case $r=1, -K^3=4, Q\subset \mathbb{P}^4$ instead of $Q\subset \mathbb{P}^5$
- p. 220, No. 3. $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1 \longrightarrow \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^2$.
- p. 221, No. 14. Missing "the union".
- p. 223, No. 5. Missing "R".
- p. 223, No. 7. Missing "R".
- p. 224, Table §12.5. One case is missing (see [Mori, S. & Mukai, S. Erratum: "Classification of Fano 3-folds with $B_2 \geq 2$ " Manuscripta Math., 2003, **110**, p. 407]).
- p. 224, Table §12.5. multidegree (1, 1, 1, 1) on $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$
- p. 224, Table §12.6. Table head: No. ρ
- p. 224, Table §12.6, second column. 5, 5.
- p. 228, referenses. Beauville A., Colliot–Thélène J.–L., Sansuc J.–J.
- p. 240, Prokhorov Yu. G. (1995c).
- p. 242. Repetition of Szurek, M. and Wiśniewski, J. A. (1990b-c)

I would like to thank Dmitri Orlov, Priska Jahnke, Cinzia Casagrande, and Erik Paemurru for pointing me out some of these typos.