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In this note we give a brief review on recent developments in the three-dimensional
minimal model program (MMP for short). Certainly, this is not a complete survey of all
advances in this area. For example, we do not discuss the minimal models of varieties of
non-negative Kodaira dimension, as well as, applications to birational geometry and moduli
spaces.

The aim of the MMP is to find a good representative in a fixed birational equivalence
class of algebraic varieties. Starting with an arbitrary smooth projective variety one can
perform a finite number of certain elementary transformations, called divisorial contractions
and flips, and at the end obtain a variety which is simpler in some sense. Most parts of the
MMP are completed in arbitrary dimension. One of the basic remaining problems is the
following:

Describe all the intermediate steps and the outcome of the MMP.

The MMP makes sense only in dimensions ≥ 2 and for surfaces it is classical and
well-known. So the first non-trivial case is the three-dimensional one. It turns out that to
proceed with the MMP in dimension ≥ 3 one has to work with varieties admitting certain
types of very mild, so-called terminal, singularities. On the other hand, dimension 3 is the
last dimension where one can expect effective results: in higher dimensions classification
results become very complicated and unreasonably long.

We will work over the field C of complex numbers throughout. A variety is either
an algebraic variety or a reduced complex space.

1. Singularities
Recall that a Weil divisor 𝐷 on a normal variety is said to beQ-Cartier if its multiple

𝑛𝐷, for some 𝑛, is a Cartier divisor. For any morphism 𝑓 : 𝑌 → 𝑋 , the pull-back 𝑓 ∗𝐷 of
a Q-Cartier divisor 𝐷 is well defined as a divisor with rational coefficients (Q-divisor). A
variety 𝑋 has Q-factorial singularities if any Weil divisor on 𝑋 is Q-Cartier.

Definition 1.1. A normal algebraic variety (or an analytic space) 𝑋 is said to have terminal
(resp. canonical, log terminal, log canonical) singularities if the canonical Weil divisor 𝐾𝑋

is Q-Cartier and for any birational morphism 𝑓 : 𝑌 → 𝑋 one can write

(1.1.1) 𝐾𝑌 = 𝑓 ∗𝐾𝑋 +
∑︁

𝑎𝑖𝐸𝑖 ,

where 𝐸𝑖 are all the exceptional divisors and 𝑎𝑖 > 0 (resp. 𝑎𝑖 ≥ 0, 𝑎𝑖 > −1, 𝑎𝑖 ≥ −1) for
all 𝑖. The smallest positive 𝑚 such that 𝑚𝐾𝑋 is Cartier is called the Gorenstein index of 𝑋 .
Canonical singularities of index 1 are rational Gorenstein.

The class of terminal Q-factorial singularities is the smallest class that is closed
under the MMP. Canonical singularities important because they appear on the canonical
models of varieties of general type. A crucial observation is that terminal singularities lie
in codimension ≥ 3. In particular, terminal surface singularities are smooth and terminal
threefold singularities are isolated. Canonical singularities of surfaces are called Du Val or
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rational double points. Any two-dimensional log terminal singularity is a quotient of a smooth
surface germ [32]. Terminal threefolds singularities were classified by M. Reid [65] and S. Mori
[43].

Example. Let 𝑋 ⊂ C4 be a hypersurface given by the equation

𝜙(𝑥1, 𝑥2, 𝑥3) + 𝑥4𝜓(𝑥1, . . . , 𝑥4) = 0,

where 𝜙 = 0 is an equation of a Du Val (ADE) singularity. Then the singularity of 𝑋 at 0 is
canonical Gorenstein. It is terminal if and only if it is isolated. Singularities of this type are
called cDV.

According to [65] any three-dimensional terminal singularity of index 𝑚 > 1 is a
quotient of an isolated cDV-singularity by the cyclic group 𝝁𝑚 of order 𝑚. More precisely,
we have the following

Theorem 1.2 ([65]). Let (𝑋 ∋ 𝑃) be an analytic germ of a three-dimensional terminal singu-
larity of index 𝑚 ≥ 1. Then there exists an isolated cDV-singularity

(
𝑋♯ ∋ 𝑃♯

)
and a cyclic

𝝁𝑚-cover
𝜋 :

(
𝑋♯ ∋ 𝑃♯

)
−→ (𝑋 ∋ 𝑃)

which is étale outside 𝑃.

The morphism 𝜋 in the above theorem is called the index-one cover. A detailed
classification of all possibilities for the equations of 𝑋♯ ⊂ C4 and the actions of 𝝁𝑚 was
obtained in [43] (see also [66]).

Example. Let the cyclic group 𝝁𝑚 act on C𝑛 diagonally via

(𝑥1, . . . , 𝑥𝑛) ↦−→
(
ζ𝑎1𝑥1, . . . , ζ

𝑎𝑛𝑥𝑛
)
, ζ = ζ𝑚 = exp(2π i/𝑚).

Then we say that (𝑎1, . . . , 𝑎𝑛) is the collection of weights of the action. Assume that the
action is free in codimension 1. Then the quotient singularity C𝑛/𝝁𝑚 ∋ 0 is said to be of type
1
𝑚
(𝑎1, . . . , 𝑎𝑛). According to the criterion (see [66, Theorem 4.11]) this singularity is terminal

if and only if
𝑛∑︁
𝑖=1

𝑘𝑎𝑖 > 𝑚 for 𝑘 = 1, . . . , 𝑚 − 1,

where is the smallest residue mod 𝑚. In the threefold case this criterion has a very simple
form: a quotient singularity C𝑚/𝝁𝑚 is terminal if and only if it is of type 1

𝑚
(1,−1, 𝑎), where

gcd(𝑚, 𝑎) = 1. This is a cyclic quotient terminal singularity.

Example ([43,66]). Let the cyclic group 𝝁𝑚 act on C4 diagonally with weights (1,−1, 𝑎, 0),
where gcd(𝑚, 𝑎) = 1. Then for a polynomial 𝜙(𝑢, 𝑣) the singularity at 0 of the quotient{

𝑥1𝑥2 + 𝜙(𝑥𝑚3 , 𝑥4) = 0
}
/𝝁𝑚

is terminal whenever it is isolated. The index of this singularity equals 𝑚.
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As a consequence of the classification, we obtain that the local fundamental group
of the (analytic) germ of a three-dimensional terminal singularity of index 𝑚 is cyclic of
order 𝑚:

(1.2.1) π1 (𝑋 \ {𝑃}) ≃ Z/𝑚Z.

In particular, for any Weil Q-Cartier divisor 𝐷 on 𝑋 its 𝑚th multiple 𝑚𝐷 is Cartier [32,

Lemma 5.1].
The class of canonical threefold singularities is much larger than the class of terminal

ones. However there are certain boundedness results. For example, it is known that the index
of a strictly canonical isolated singularity is at most 6 [31].

The modern higher dimensional MMP often works with pairs and one need to extend
Definition 1.1 to a wider class of objects.

Definition. Let 𝑋 be a normal variety and let 𝐵 be an effective Q-divisor on 𝑋 . The pair
(𝑋, 𝐵) is said to be plt (resp. lc) if 𝐾𝑋 + 𝐵 is Q-Cartier and for any birational morphism
𝑓 : 𝑌 → 𝑋 one can write

𝐾𝑌 + 𝐵𝑌 = 𝑓 ∗ (𝐾𝑋 + 𝐵) +
∑︁

𝑎𝑖𝐸𝑖 ,

where 𝐵𝑌 is the proper transform of 𝐵, 𝐸𝑖 are all the exceptional divisors and 𝑎𝑖 > −1 (resp.
𝑎𝑖 ≥ −1) for all 𝑖. The pair (𝑋, 𝐵) is said to be klt if it is plt and ⌊𝐵⌋ = 0.

2. Minimal Model Program
Basic elementary operations in the MMP are Mori contractions.
A contraction is a proper surjective morphism 𝑓 : 𝑋 → 𝑍 of normal varieties with

connected fibers. The exceptional locus of a contraction 𝑓 is the subset Exc( 𝑓 ) ⊂ 𝑋 of points
at which 𝑓 is not an isomorphism. A Mori contraction is a contraction 𝑓 : 𝑋 → 𝑍 such that
the variety 𝑋 has at worst terminal Q-factorial singularities, the anticanonical class −𝐾𝑋 is
𝑓 -ample, and the relative Picard number ρ(𝑋/𝑍) equals 1. A Mori contraction is said to be
divisorial (resp. flipping) if it is birational and the locus Exc( 𝑓 ) has codimension 1 (resp.
≥ 2). For a divisorial contraction the exceptional locus Exc( 𝑓 ) is a prime divisor. A Mori
contraction, whose target is a lower dimensional variety, is called Mori fiber space. Then
the general fiber is a Fano variety with at worst terminal singularities. In the particular cases
where the relative dimension of 𝑋/𝑍 equals 1 (resp. 2) the Mori fiber space 𝑓 : 𝑋→ 𝑍 is called
Q-conic bundle (resp. Q-del Pezzo fibration). If 𝑍 is a point, then 𝑋 is a Fano variety with
at worst terminal Q-factorial singularities and Pic(𝑋) ≃ Z. For short, we call such varieties
Q-Fano.

The MMP procedure is a sequence of elementary transformations which are con-
structed inductively [35,39]. Let 𝑋 be a projective algebraic variety with terminal Q-factorial
singularities. If the canonical divisor 𝐾𝑋 is not nef, then there exists a Mori contraction
𝑓 : 𝑋 → 𝑍 . If 𝑓 is divisorial, then 𝑍 is again a variety with terminal Q-factorial singulari-
ties and, in this situation, we can proceed with the MMP replacing 𝑋 with 𝑍 . In contrast, a
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flipping contraction takes us out the category of terminal Q-factorial varieties. To proceed,
one has to perform a surgery operation as follows

𝑋

𝑓 &&

// 𝑋+

𝑓 +ww
𝑍

where 𝑓 + is a contraction whose exceptional locus has codimension ≥ 2 and the divisor 𝐾𝑋+

is Q-Cartier and 𝑓 +-ample. Then the variety 𝑋+ again has terminal Q-factorial singularities
and we can proceed by replacing 𝑋 with 𝑋+.

The process described above should terminate and at the end we obtain a variety �̄�
such that either �̄� has a Mori fiber space structure �̄� → �̄� or 𝐾�̄� is nef. One of the remain-
ing open problems is the termination of the program, to be more precise, termination of a
sequence of flips. The problem solved affirmatively in dimension ≤ 4 [35, 69], for varieties
of general type, for uniruled varieties [5], and in some other special cases. We refer to [3] for
more comprehensive survey of the higher-dimensional MMP.

The MMP has a huge number of applications in algebraic geometry. The most
impressive consequence of the MMP is the finite generation of the canonical ring

R(𝑋, 𝐾𝑋) :=
⊕
𝑛≥0

𝐻0 (𝑋,O𝑋 (𝑚𝐾𝑋))

of a smooth projective variety 𝑋 [5, 15]. Another application of the MMP is so-called Sark-
isov program which allows to decompose a birational maps between Mori fiber spaces into
composition of elementary transformations, called Sarkisov links [9, 16, 68]. Also the MMP
can be applied to varieties with finite group actions and to varieties over non-closed fields
(see [63]).

As was explained above, the Mori contractions are fundamental building blocks in
the MMP. To apply the MMP effectively, one needs to understand the structure of its steps
in details. For a Mori contraction 𝑓 : 𝑋 → 𝑍 of a three-dimensional variety 𝑋 there are only
the following possibilities:

• 𝑓 is divisorial and the image of the (prime) exceptional divisor 𝐸 := Exc( 𝑓 ) is
either a point or an irreducible curve,

• 𝑓 is flipping and the exceptional locus Exc( 𝑓 ) is a union of a finite number of
irreducible curves,

• 𝑍 is a surface and 𝑓 is a Q-conic bundle,

• 𝑍 is a curve and 𝑓 is a Q-del Pezzo fibration,

• 𝑍 is a point and 𝑋 is a Q-Fano threefold.

Mori contractions of smooth threefolds to varieties of positive dimension where classified in
the pioneer work of S. Mori [42]. S. Cutkosky [12] extended this classification to the case of
Gorenstein terminal varieties. Smooth Fano threefolds of Picard number one where classified
by Iskovskikh [22, 23] (see also [25]). Fano threefolds with Gorenstein terminal singularities
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are degenerations of smooth ones [57]. Below we are going to discuss Mori contractions of
threefolds. We are interested only in the biregular structure of a contraction 𝑓 : 𝑋→ 𝑍 near a
fixed fiber 𝑓 −1 (𝑜), 𝑜 ∈ 𝑍 . Typically we do not consider the simple case where 𝑋 is Gorenstein.

3. General elephant
A natural way to study higher-dimensional varieties is the inductive one. Typically

to apply this method we need to find a certain subvariety of dimension one less (divisor)
which is sufficiently good is the sense of singularities.

Conjecture 3.1. Let 𝑓 : 𝑋 → (𝑍 ∋ 𝑜) be a threefold Mori contraction, where (𝑍 ∋ 𝑜) is a
small neighborhood. Then the general member 𝐷 ∈ |−𝐾𝑋 | is a normal surface with Du Val
singularities.

The conjecture was proposed by M. Reid who called a good member of |−𝐾𝑋 |
“elephant”. We follow this language and call 3.1 the General Elephant Conjecture. The impor-
tance of the existence of good member in |−𝐾𝑋 | is motivated by many reasons:

• The general elephant passes through all the non-Gorenstein points of 𝑋 and so it
encodes the information about their types and configuration (cf. Proposition 3.2
below).

• For flipping contractions Conjecture 3.1 is a sufficient condition for the existence
of threefold flips [32].

• For a divisorial contraction 𝑓 : 𝑋→ 𝑍 whose fibers have dimension ≤ 1 the image
𝐷𝑍 := 𝑓 (𝐷) of a Du Val elephant 𝐷 ∈ |−𝐾𝑋 | must be again Du Val and the image
Γ := 𝑓 (𝐸) of the exceptional divisor is a curve on 𝐷𝑍 . Then one can reconstruct 𝑓
starting from the triple (𝑍 ⊃ 𝐷𝑍 ⊃ Γ) by using certain birational procedure. Such
an approach was successfully worked out in many cases by N. Tziolas [71–74].

• If 𝑓 : 𝑋 → (𝑍 ∋ 𝑜) is a Q-del Pezzo fibration such that general 𝐷 ∈ |−𝐾𝑋 | is Du
Val, then composing the projection 𝐷 → 𝑍 with minimal resolution �̃� → 𝐷 we
obtain a relatively minimal elliptic fibration whose singular fibers are classified
by Kodaira [36]. Then one can get a bound of multiplicities of fibers and describe
the configuration of non-Gorenstein singularities.

• For a Q-Fano threefold 𝑋 , a Du Val general elephant is a (singular) K3 surface.
In the case where the linear system |−𝐾𝑋 | is “sufficiently big” this implies the
existence of a good Gorenstein model [1].

Shokurov [70] generalized Conjecture 3.1 and introduced a new notion which is
very efficient in the study of pluri-anticanonical linear systems. Omitting technicalities we
reproduce a weak form of Shokurov’s definition.
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Definition. An 𝑛-complement of the canonical class 𝐾𝑋 is a member 𝐷 ∈ |−𝑛𝐾𝑋 | such that
the pair (𝑋, 1

𝑛
𝐷) is lc. An 𝑛-complement is said to be klt (resp. plt) if so the pair (𝑋, 1

𝑛
𝐷) is.

According to the inversion of adjunction [70] the existence of a Du Val general ele-
phant 𝐷 ∈ |−𝐾𝑋 | is equivalent to the existence of a plt 1-complement. Shokurov developed
a powerful theory that works in arbitrary dimension and allows to construct complements
inductively (see [70], [64] and references therein).

Note that Reid’s general elephant fails for Fano threefolds. For example, in [7,21] one
can find examples of Q-Fano threefolds with empty anticanonical linear system. Because of
this, the statement of 3.1 sometimes is called “principle”. Nonetheless there are only a few
examples of such Fano threefolds. In the cases dim(𝑍) > 0 Conjecture 3.1 is expected to be
true. The following should be considered as the local version of 3.1.

Proposition 3.2 (Reid [66]). Let (𝑋 ∋ 𝑃) be the analytic germ of a threefold terminal singular-
ity of index𝑚 > 1. Then the general member 𝐷 ∈ |−𝐾𝑋 | is a Du Val singularity. Furthermore,
let 𝜋 : 𝑋 ′→ 𝑋 be the index-one cover and let 𝐷′ := 𝜋−1 (𝐷). Then the cover 𝐷′→ 𝐷 belongs
to one of the following six types:

(𝑋 ∋ 𝑃) 𝐷′ −→ 𝐷 (𝑋 ∋ 𝑃) 𝐷′ −→ 𝐷

cA/m Ak−1
𝑚:1−−−−→ Akm−1 cAx/2 A2k−1

2:1−−−→ Dk+2

cAx/4 A2k−2
4:1−−−→ D2k+1 cD/2 Dk+1

2:1−−−→ D2k

cD/3 D4
3:1−−−→ E6 cE/2 E6

2:1−−−→ E7

4. Divisorial contractions to a point
In this section we treat divisorial Mori contractions of a divisor to a point. This

kind of contractions is studied very well due to works of Y. Kawamata [34], A. Corti [10],
M. Kawakita [26–30], T. Hayakawa [18–20], and others. In this case General Elephant Conjec-
ture 3.1 has been proved:

Theorem 4.1 (Kawakita [28,29]). Let 𝑓 : 𝑋 → (𝑍 ∋ 𝑜) be a divisorial Mori contraction that
contracts a divisor to a point. Then the general member 𝐷 ∈ |−𝐾𝑋 | is Du Val.

One of the main tools in the proofs is the orbifold Riemann-Roch formula [66]: if 𝑋 is
a three-dimensional projective variety with terminal singularities and 𝐷 is a Weil Q-Cartier
divisor on 𝑋 , then for the sheaf L = O𝑋 (𝐷) there is a formula of the form

(4.1.1) 𝜒(L ) = 𝜒(O𝑋) +
1

12
𝐷 · (𝐷 − 𝐾𝑋) · (2𝐷 − 𝐾𝑋) +

1
12
𝐷 · c2 +

∑︁
𝑃

𝑐𝑃 (𝐷),

where the sum rungs through all the virtual quotient singularities of 𝑋 , i.e. through the actual
singularities of 𝑋 are replaced with their small deformations [66], and 𝑐𝑃 (𝐷) is a local con-
tribution due to singularity at 𝑃, depending only on the local analytic type of 𝐷 at 𝑃. There
is an explicit formula for computation of 𝑐𝑃 (𝐷).
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Except for a few hard cases the classification of divisorial Mori contractions of a
divisor to a point has been completed. Typical result here is to show that a contraction is a
weighted blowup with some explicit collection of weights:

Theorem 4.2 (Y. Kawamata [34]). Let 𝑓 : 𝑋 → (𝑍 ∋ 𝑜) be a divisorial Mori contraction
that contracts a divisor to a point. Assume that 𝑜 ∈ 𝑍 is a cyclic quotient singularity of type
1
𝑟
(𝑎,−𝑎, 1). Then 𝑓 is the weighted blowup with weights (𝑎/𝑟, 1 − 𝑎/𝑟, 1/𝑟).

Theorem 4.3 (M. Kawakita [26]). Let 𝑓 : 𝑋 → (𝑍 ∋ 𝑜) be a divisorial Mori contraction that
contracts a divisor to a smooth point. Then 𝑓 is the weighted blowup with weights (1, 𝑎, 𝑏),
where gcd(𝑎, 𝑏) = 1.

These results are intensively used in the three-dimensional birational geometry, for
example, in the proof of birational rigidity of index 1 Fano threefold weighted hypersur-
faces [11].

5. Del Pezzo fibrations
Much less is known about local structure ofQ-del Pezzo fibrations. As was explained

in Sect. 3, the existence of a Du Val general elephant would be very helpful in the study these
kind of contractions. However, in this case Conjecture 3.1 is established only in some special
situation.

An important question that can be asked in the Del Pezzo fibration case is the pres-
ence of multiple fibers.

Theorem 5.1 ([49]). Let 𝑓 : 𝑋 → 𝑍 be a Q-del Pezzo fibration and let 𝑓 ∗ (𝑜) = 𝑚𝑜𝐹𝑜 be a
special fiber of multiplicity 𝑚𝑜. Then 𝑚𝑜 ≤ 6 and all the cases 1 ≤ 𝑚𝑜 ≤ 6 occur. Moreover,
the possibilities for the local behavior of 𝐹𝑜 near singular points are described.

The main idea of the proof is to apply the orbifold Riemann-Roch formula (4.1.1)
to the divisor 𝐹𝑜 and its multiples.

Example. Suppose that the cyclic group 𝝁4 acts on P1
𝑥 × P1

𝑦 × C𝑡 via

(𝑥, 𝑦; 𝑡) ↦−→
(
𝑦, −𝑥,

√
−1 𝑡

)
.

Then the quotient
𝑋 =

(
P1 × P1 × C

)
/𝝁4 −→ 𝑍 = C/𝝁4

is the germ of a Q-del Pezzo fibration with central fiber of multiplicity 4.

Another type Q-del Pezzo fibrations which is investigated relatively well are those
whose central fiber 𝐹 := 𝑓 −1 (𝑜) is reduced, normal, and has “good” singularities. Then
𝑋 can be viewed as a one-parameter smoothing of 𝐹. The total space of this smoothing
must be Q-Gorenstein and 𝐹 can be viewed as a degeneration of a general fiber (smooth del
Pezzo surface) in a Q-Gorenstein family. The most studied class of singularities admitting
Q-Gorenstein smoothings is the class of singularities of type T.
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Definition (Kollár, Shepherd-Barron [40]). A two-dimensional quotient singularity is said to
be of type T if it admits a smoothing in a one-parameter Q-Gorenstein family 𝑋 → 𝐵.

In this case, by the inversion of adjunction [70], the pair (𝑋, 𝐹) is plt and the total
family 𝑋 is terminal. Conversely, if 𝑋 ∋ 𝑃 is aQ-Gorenstein point and 𝐹 is an effective Cartier
divisor at 𝑃 such that the pair (𝑋, 𝐹) is plt, then 𝐹 ∋ 𝑃 is a T-singularity and the point 𝑋 ∋ 𝑃 is
terminal. Singularities of type T and their deformations were studied by Kollár and Shepherd-
Barron [40]. In particular, they proved that any T-singularity is either a Du Val point or a cyclic
quotient of type 1

𝑚
(𝑞1, 𝑞2) with

gcd(𝑚, 𝑞1) = gcd(𝑚, 𝑞2) = 1, (𝑞1 + 𝑞2)2 ≡ 0 mod 𝑚.

Minimal resolutions of these singularities are also described [40, § 3].
Thus to study Q-del Pezzo fibrations whose central fiber has only quotient singular-

ities one has to consider Q-Gorenstein smoothings of del Pezzo surfaces with singularities
of type T. The important auxiliary fact here is the unobstructedness of deformations:

Proposition 5.2 ([13, 41]). Let 𝐹 be a projective surface with log canonical singularities
such that −𝐾𝐹 is big. Then there are no local-to-global obstructions to deformations of 𝐹.
In particular, if 𝐹 has T-singularities, then 𝐹 admits a Q-Gorenstein smoothing.

Theorem 5.3 (Hacking-Prokhorov [13]). Let 𝐹 be a projective surface with quotient singu-
larities such that −𝐾𝐹 is ample, ρ(𝐹) = 1, and 𝐹 admits a Q-Gorenstein smoothing. Then 𝐹
belongs to one of the following series:

• 14 infinite series of toric surfaces (see below);

• partial smoothing of a toric surface as above;

• 18 sporadic families of surfaces of index ≤ 2 [2].

Toric surfaces appeared in the above theorem are determined by a Markov-type equa-
tion. More precisely, for 𝐾2

𝐹
≥ 5 these surfaces are weighted projective spaces given by the

following table:

𝐾2
𝐹

𝐹 Markov-type equation

9 P
(
𝑎2, 𝑏2, 𝑐2) 𝑎2 + 𝑏2 + 𝑐2 = 3𝑎𝑏𝑐

8 P
(
𝑎2, 𝑏2, 2𝑐2) 𝑎2 + 𝑏2 + 2𝑐2 = 4𝑎𝑏𝑐

6 P
(
𝑎2, 2𝑏2, 3𝑐2) 𝑎2 + 2𝑏2 + 3𝑐2 = 6𝑎𝑏𝑐

5 P
(
𝑎2, 𝑏2, 5𝑐2) 𝑎2 + 𝑏2 + 5𝑐2 = 5𝑎𝑏𝑐

and for 𝐾2 ≤ 4 they are certain abelian quotients of the weighted projective spaces as above.
Note however that in general we cannot assert that for central fiber 𝐹 of aQ-del Pezzo fibration
the condition ρ(𝐹) = 1 holds. Some partial results in the case ρ(𝐹) > 1 where obtained in
[60]. In particular, [60] establishes the existence of Du Val general elephant for Q-del Pezzo
fibrations with “good” fibers:
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Theorem 5.4. Let 𝑓 : 𝑋 → (𝑍 ∋ 𝑜) be a Q-del Pezzo fibration over a curve germ 𝑍 ∋ 𝑜.
Assume that the fiber 𝑓 −1 (𝑜) is reduced, normal and has only log terminal singularities.
Then the general elephant 𝐷 ∈ |−𝐾𝑋 | is Du Val.

Theorem 5.3 gives a complete answer to the question posed by M. Manetti [41]:

Corollary 5.5 ([13]). Let 𝑋 be a projective surface with quotient singularities which admits
a smoothing to P2. Then 𝑋 is a Q-Gorenstein deformation of a weighted projective plane
P

(
𝑎2, 𝑏2, 𝑐2) , where the triple (𝑎, 𝑏, 𝑐) is a solution of the Markov equation

𝑎2 + 𝑏2 + 𝑐2 = 3𝑎𝑏𝑐.

Results similar to Theorem 5.3 were obtained forQ-del Pezzo fibrations whose cen-
tral fiber is log canonical [62]. However in this case the classification is not complete.

6. Extremal curve germs
To study Mori contractions with fibers of dimension ≤ 1 it is convenient to work

with analytic threefolds and to localize to situation near a curve contained in a fiber.

Definition 6.1. Let (𝑋 ⊃ 𝐶) be the analytic germ of a threefold with terminal singularities
along a reduced connected complete curve. Then (𝑋 ⊃ 𝐶) is called an extremal curve germ
if there exists a contraction

𝑓 : (𝑋 ⊃ 𝐶) → (𝑍 ∋ 𝑜)

such that 𝐶 = 𝑓 −1 (𝑜)red and −𝐾𝑋 is 𝑓 -ample. The curve 𝐶 is called the central fiber
of the germ and 𝑍 ∋ 𝑜 is called the target variety or the base of (𝑋 ⊃ 𝐶). An extremal curve
germ is said to be irreducible if so its central fiber is.

In the definition above we do not assume that 𝑋 isQ-factorial nor ρ(𝑋/𝑍) = 1. This
is because Q-factoriality typically is not a local condition in the analytic category (see [32,

§ 1]). There are three types of extremal curve germs.

• flipping if is 𝑓 birational and does not contract divisors;

• divisorial if the exceptional locus is two-dimensional;

• Q-conic bundle germ if the target variety 𝑍 is a surface.

If a divisorial curve germ is irreducible, then the exceptional locus of the corresponding
contraction is a Q-Cartier divisor and the target variety 𝑍 has terminal singularities [51, §3].
In general this is not true. It may happen that the exceptional locus is a union of a divisor and
some curves.

As an example we consider that case where 𝑋 has singularities of indices 1 and 2.

Theorem 6.2 ([47]). Let (𝑋 ⊃ 𝐶) be aQ-conic bundle germ over a smooth base. Assume that
𝑋 is not Gorenstein and 2𝐾𝑋 is Cartier. Then 𝑋 can be embedded to P(1, 1, 1, 2) × C2 and
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given there by two quadratic equations. In particular, the point 𝑃 ∈ 𝑋 of index 2 is unique,
the curve 𝐶 has at most 4 components, all of them pass through 𝑃.

Theorem 6.3 ([38]). Let (𝑋 ⊃ 𝐶) be a flipping extremal curve germ and let

(𝑋 ⊃ 𝐶)
𝑓

,,

// (𝑋+ ⊃ 𝐶+)
𝑓 +

rr(𝑍 ∋ 𝑜)
be the corresponding flip. Assume that 2𝐾𝑋 is Cartier. Then (𝑍 ∋ 𝑜) is the quotient of the
isolated hypersurface singularity

{𝑥1𝑥3 + 𝑥2𝜙(𝑥2
2, 𝑥4) = 0} ∋ 0

by the 𝝁2-action given by the weights (1, 1, 0, 0). The contraction 𝑓 (resp. 𝑓 +) is the quotient
of the blowup of the plane {𝑥2 = 𝑥3 = 0} (resp. {𝑥1 = 𝑥2 = 0}) by 𝝁2. In particular, 𝑋 contains
a unique point of index 2 and the central fiber𝐶 is irreducible. The variety 𝑋+ is Gorenstein.

Similar description is known for divisorial extremal curve germs of index 2 [38, § 4].

First properties. Let (𝑋 ⊃ 𝐶) be an extremal curve germ and let 𝑓 : (𝑋 ⊃ 𝐶) → (𝑍 ∋ 𝑜)
be the corresponding contraction. For any connected subcurve 𝐶′ ⊂ 𝐶 the germ (𝑋 ⊃ 𝐶′)
is again an extremal curve germ. If moreover 𝐶′ ⫋ 𝐶, then (𝑋 ⊃ 𝐶′) is birational. By the
Kawamata-Viehweg vanishing theorem

(6.3.1) 𝑅1 𝑓∗O𝑋 = 0

(see e.g. [35]). As a consequence one has pa (𝐶′) ≤ 0 for any subcurve 𝐶′ ⊂ 𝐶. In particular,
𝐶 = ∪𝐶𝑖 is a “tree” of smooth rational curves. Furthermore,

(6.3.2) Pic(𝑋) ≃ 𝐻2 (𝑋,Z) ≃ Z⊕𝑛,

where 𝑛 the number of irreducible components of𝐶. For more delicate properties of extremal
curve germs one needs to know the cohomology of the dualizing sheaf, see [44,47]:

(6.3.3) 𝑅1 𝑓∗ω𝑋 =

 0 if 𝑓 is birational,

ω𝑍 if 𝑓 is Q-conic bundle and 𝑍 is smooth.

Definition. An irreducible extremal curve germ (𝑋 ⊃ 𝐶) is (locally) imprimitive at a point
𝑃 if the inverse image of 𝐶 under the index-one cover (𝑋 ′ ∋ 𝑃′) → (𝑋 ∋ 𝑃) splits.

Theorem 6.4 ([44,47]). Let (𝑋 ⊃ 𝐶) be an extremal curve germ and let 𝐶1, . . . , 𝐶𝑛 be irre-
ducible components of 𝐶.

• Each 𝐶𝑖 contains at most 3 singular points of 𝑋 .

• Each 𝐶𝑖 contains at most 2 non-Gorenstein of 𝑋 and at most 1 point which is
imprimitive for (𝑋 ⊃ 𝐶𝑖).

• If 𝑋 is Gorenstein at the intersection point 𝑃 = 𝐶𝑖 ∩𝐶 𝑗 ,𝐶𝑖 ≠ 𝐶 𝑗 , then 𝑋 is smooth
outside 𝑃 and (𝑋 ⊃ 𝐶) is a Q-conic bundle germ over a smooth base.
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To prove the first assertion, one needs to analyze the conormal sheaf 𝐼𝐶/𝐼2
𝐶

and use
the vanishing 𝐻1 (O𝑋/𝐽) = 0 for any 𝐽 ⊂ O𝑋 with Supp(O𝑋/𝐽) = 𝐶 (see [44, 55]). For the
second assertion one can use topological arguments based on (1.2.1) (see [55]). For the last
assertion we refer to [44, 1.15], [37, 4.2], and [55, 4.7.6]

The techniques applied in the proof of the above proposition allow to obtain much
stronger results. In particular, it allows to classify all the possibilities for the local behavior
of an irreducible germ (𝑋 ⊃ 𝐶) near a singular point 𝑃 [44]. Thus according to [44] and [47]

the triple (𝑋 ⊃ 𝐶 ∋ 𝑃) belongs to one of the following types:

(IA), (IC), (IIA), (IIB),
(
IA∨

)
,
(
II∨

)
,
(
ID∨

)
,
(
IE∨

)
, (III).

Here the symbol ∨ means that (𝑋 ⊃ 𝐶 ∋ 𝑃) is locally imprimitive, the symbol II means that
(𝑋 ∋ 𝑃) is a terminal point of exceptional type cAx/4 (see Proposition 3.2), and III means
that (𝑋 ∋ 𝑃) is an (isolated) cDV-point.

For example, a triple (𝑋 ⊃ 𝐶 ∋ 𝑃) is of type (IC) if there are analytic isomorphisms

(𝑋 ∋ 𝑃) ≃ C3
𝑦1 ,𝑦2 ,𝑦4/𝝁𝑚 (2, 𝑚 − 2, 1), 𝐶 ≃ {𝑦𝑚−2

1 − 𝑦2
2 = 𝑦4 = 0}/𝝁𝑚,

where 𝑚 is odd and 𝑚 ≥ 5. For definitions other types we refer the reader to [44] and [47].

6.5. Construction of germs by deformations
Let (𝑋 ⊃𝐶) be an extremal curve germ and let 𝑓 : 𝑋→ (𝑍 ∋ 𝑜) be the corresponding

contraction. Denote by |O𝑍 | the infinite dimensional linear system of hyperplane sections
passing through 𝑜 and let |O𝑋 | := 𝑓 ∗ |O𝑍 |. The general hyperplane section of (𝑋 ⊃ 𝐶) is
the general member 𝐻 ∈ |O𝑋 |. The divisor 𝐻 contains much more information on the total
space than general elephant 𝐷 ∈ |−𝐾𝑋 |. However, the singularities of 𝐻 typically are more
complicated, in particular, 𝐻 can be non-normal.

The variety 𝑋 (resp. 𝑍) can be viewed as the total space of a one-parameter defor-
mation of 𝐻 (resp. 𝐻𝑍 := 𝑓 (𝐻)). We are going to reverse this consideration.

Construction (see [38, § 11], [44, § 1b]). Suppose we are given a normal surface germ (𝐻 ⊃ 𝐶)
along a proper curve 𝐶 and a contraction 𝑓𝐻 : 𝐻 → 𝐻𝑍 such that 𝐶 is a fiber and −𝐾𝐻 is
𝑓𝐻 -ample. Let 𝑃1, . . . , 𝑃𝑟 ∈ 𝐻 be all the singular points. Assume also that near each 𝑃𝑖 there
exists a small one-parameter deformation ℌ𝑖 of a neighborhood 𝐻𝑖 of 𝑃𝑖 in 𝐻 such that the
total space ℌ𝑖 has a terminal singularity at 𝑃𝑖 . The obstruction to globalize deformations

Ψ : Def(𝐻) −→
∏

𝑃𝑖∈Sing(𝐻 )
Def (𝐻, 𝑃𝑖)

lies in 𝑅2 𝑓∗T𝐻 , where T𝐻 = Hom (Ω𝐻 ,O𝐻 ) is the tangent sheaf of 𝐻. Since 𝑅2 𝑓∗T𝐻 = 0 by
the dimension reason, the morphism Ψ is smooth and so there exists a global one-parameter
deformation ℌ of 𝐻 inducing a local deformation of ℌ𝑖 near 𝑃𝑖 .

Then we have a threefold 𝑋 := ℌ ⊃ 𝐶 with 𝐻 ∈ |O𝑋 | such that locally near 𝑃𝑖 it has
the desired structure and one can extend 𝑓𝐻 to a contraction 𝑓 : 𝑋 → 𝑍 which is birational
(resp. a Q-conic bundle) if 𝐻𝑍 is a surface (resp. a curve).
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Example. Consider a rational curve fibration 𝑓�̃� : �̃�→ 𝐻𝑍 over a smooth curve germ 𝐻𝑍 ∋
𝑜, where �̃� is a smooth surface, such that the fiber over 𝑜 has the following weighted dual
graph:

(6.5.1)
−2
□

−1• −3◦ −2◦ −3◦ −1•

◦
−3

•
−1

Contracting the curves corresponding to the white vertices □ and ◦ we obtain a singular
surface 𝐻 and a 𝐾𝐻 -negative contraction 𝑓𝐻 : 𝐻→ 𝐻𝑍 whose fiber over 𝑜 is a curve𝐶 ⊂ 𝐻
having three irreducible components that correspond to the black vertices •. The singular
locus of 𝐻 consists of a Du Val point 𝑃0 ∈ 𝐻 of type A1 and a log canonical singularity
𝑃 ∈ 𝐻 whose dual graph is formed by the white circle vertices ◦. Both 𝑃0 and 𝑃 have a 1-
parameter Q-Gorenstein smoothings [38, Computation 6.7.1]. Applying the above construction
to 𝐻 ⊃ 𝐶 we obtain an example of a Q-conic bundle contraction 𝑓 : (𝑋 ⊃ 𝐶) → (𝑍 ∋ 𝑜)
with a unique non-Gorenstein point which is of type cD/3. If we remove the (−2)-curve
corresponding to □ on the left hand side of the graph (6.5.1), we get a birational contraction
of surfaces 𝑓 ′

𝐻
: 𝐻′→ 𝐻′

𝑍
. Applying the same construction to 𝐻′ ⊃ 𝐶 we obtain an example

of a divisorial contraction. Similarly, removing further one of the (−1)-curves we get a flip.

7. Extremal curve germs: general elephant
Theorem 7.1 (Mori [44], Kollár-Mori [38], Mori-Prokhorov [50]). Let (𝑋 ⊃ 𝐶) be an irre-
ducible extremal curve germ. Then the general member 𝐷 ∈ |−𝐾𝑋 | has only Du Val singu-
larities.

The existence of a Du Val elephant for extremal curve germs with reducible central
fiber is not known at the moment. See Theorem 9.2 below for partial results in this direction.

Comment on the proof. Essentially, there are three methods to find a good elephant𝐷 ∈ |−𝐾𝑋 |.
We outline them below.

7.1.1. As in Proposition 3.2, near each non-Gorenstein point 𝑃𝑖 ∈ 𝑋 take a local general
elephant 𝐷𝑖 ∈ |−𝐾 (𝑋∋𝑃𝑖 ) |. Since 𝐷𝑖 is general, we have 𝐷𝑖 ∩𝐶 = {𝑃𝑖}. Then we can regard
𝐷 :=

∑
𝐷𝑖 as a Weil divisor on 𝑋 . By the construction, 𝐾𝑋 + 𝐷 is a Cartier divisor near each

𝑃𝑖 , hence it is Cartier everywhere. In some cases it is possible to compute the intersection
numbers 𝐷𝑖 · 𝐶 and show that 𝐷 · 𝐶 < 1. Then we may assume that 𝐾𝑋 + 𝐷 ∼ 0 by (6.3.2)
and so 𝐷 is a Du Val anticanonical divisor. For example, this method works for extremal
curve germs described in Theorems 6.2 and 6.3, as well as in Example 7.3 below.

7.1.2. In some cases, the above approach does not work but it allows to show the existence
of a klt 2-complement 𝑆 ∈ |−2𝐾𝑋 | such that dim(𝐷 ∩ 𝐶) = 0. Then one can try to extend a
good element from the surface 𝑆. The crucial fact here is that the natural map

𝜏 : 𝐻0 (𝑋,O𝑋 (−𝐾𝑋)) −→ 𝐻0 (𝑆,O𝑆 (−𝐾𝑋)) = ω𝑆
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is surjective if (𝑋, 𝐶) is birational and surjective modulo Ω2
𝑆

if (𝑋,𝐶) is a Q-conic bundle.
This immediately follows from (6.3.3). Details can found in [38, § 2] and [50].

7.1.3. Finally, in the most complicated cases none of the above methods work. Then one
needs more subtle techniques which requires detailed analysis of singularities and infinitesi-
mal structure of 𝑋 along 𝐶 [44, §§ 8-9]. Then, roughly speaking, the good section 𝐷 ∈ |−𝐾𝑋 |
is recovered as the formal Weil divisor lim

←−
𝐶𝑛 of the completion 𝑋∧ of 𝑋 along 𝐶, where 𝐶𝑛

are subschemes with support 𝐶 constructed by using certain inductive procedure [44, § 9].
As a consequence of Theorem 7.1, in the Q-conic bundle case one obtains the fol-

lowing fact which proves Iskovskikh’s conjecture [24].

Corollary 7.2. Let (𝑋 ⊃ 𝐶) be a Q-conic bundle germ over (𝑍 ∋ 𝑜), where 𝐶 can be
reducible. Then (𝑍 ∋ 𝑜) is a Du Val singularity of type An (or smooth).

This result is very useful for applications to the rationality problem of three-dimensional
varieties having conic bundle structure [24, 61] and some problems of biregular geometry
[58,59].

It turns out that the structure of Q-conic bundle germs over a singular base (𝑍 ∋ 𝑜)
is much simpler and short than other ones. In fact these germs can be exhibited as certain
quotients of Q-conic bundles of index ≤ 2 (see Theorem 6.2). A complete classification of
such germs was obtained in [47,48]. Here is a typical example.

Example 7.3. Let the group 𝝁𝑛 act on on C2
𝑢,𝑣 and P1

𝑥,𝑦 × C2
𝑢,𝑣 via

(𝑥: 𝑦; 𝑢, 𝑣) ↦−→
(
𝑥: Z𝑎𝑦; Z𝑢, Z−1𝑣

)
,

where Z = Z𝑛 = exp(2𝜋𝑖/𝑛) and gcd(𝑛, 𝑎) = 1. Then the projection

𝑓 : 𝑋 =
(
P1 × C2)/𝝁𝑛 −→ 𝑍 = C2/𝝁𝑛

is a Q-conic bundle. The variety 𝑋 has exactly two singular points which are terminal cyclic
quotients of type 1

𝑛
(1,−1,±𝑎). The surface 𝑍 has at 0 a Du Val point of type An−1.

McKernan proposed a natural higher-dimensional analogue of Corollary 7.2:

Conjecture 7.4. Let 𝑓 : 𝑋 → 𝑍 be a 𝐾-negative contraction such that ρ(𝑋/𝑍) = 1 and 𝑋 is
Y-lc, that is, all the coefficients in (1.1.1) satisfy 𝑎𝑖 ≥ −1 + Y. Then 𝑍 is 𝛿-lc, where 𝛿 depends
on Y and the dimension.

A deeper version of this conjecture which generalizes Theorem 5.1 and uses the
notion was proposed by Shokurov. He also suggested that the optimal value of 𝛿, in the
case where singularities of 𝑋 are canonical and 𝑓 has one-dimensional fibers, equals 1/2.
Recently, this was proved by J. Han, C. Jiang, and Y. Luo [17].

Once we have a Du Val general elephants, all extremal curve germs can be divided
into two large classes which will be discussed separately in the next two sections.

Definition 7.5. Let (𝑋 ⊃ 𝐶) be an extremal curve germ and let 𝑓 : 𝑋 → (𝑍 ∋ 𝑜) be the
corresponding contraction. Assume that the general member 𝐷 ∈ |−𝐾𝑋 | is Du Val. Consider
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the Stein factorization:

𝑓𝐷 : 𝐷 −→ 𝐷′ −→ 𝑓 (𝐷) (put 𝐷′ = 𝑓 (𝐷) if 𝑓 is birational).

Then the germ (𝑋 ⊃ 𝐶) is said to be semistable if 𝐷′ has only (Du Val) singularities of type
An. Otherwise, (𝑋 ⊃ 𝐶) is called exceptional.

8. Semistable germs
Let (𝑋 ⊃ 𝐶) be an irreducible extremal curve germ. By Theorem 7.1 the general

member𝐷 ∈ |−𝐾𝑋 | is Du Val. In this section we assume that (𝑋 ⊃𝐶) is semistable. Excluding
simple cases, we assume also that 𝑋 is not Gorenstein [12] and (𝑋 ⊃𝐶) is not aQ-conic bundle
germ over a singular base [47,48]. According to Theorem 6.4 the threefold 𝑋 has at most two
non-Gorenstein points. Thus the following case division is natural:

Case (k1A): the set of non-Gorenstein points consists of a single point 𝑃;

Case (k2A): the set of non-Gorenstein points consists of exactly two points 𝑃1, 𝑃2.

Proposition 8.1. In the above hypothesis, for the general member 𝐻 ∈ |O𝑋 | the pair (𝑋, 𝐻 +
𝐷) is lc. If moreover 𝐷 ⊃ 𝐶, then 𝐻 is normal and has only cyclic quotient singularities. In
this case the singularities of 𝐻 are of type T.

The proof uses the inversion of adjunction [70] to extend a general hyperplane section
from 𝐷 to 𝑋 (see [51, Proposition 2.6]).

For an extremal curve germ of type (k2A) any member 𝐷 ∈ |−𝐾𝑋 | contains 𝐶 [38].
Hence the general hyperplane section𝐻 ∈ |O𝑋 | has only T-singularities and 𝑋 can be restored
as a one-parameter deformation space of 𝐻. In this case 𝑋 has no singularities other than
𝑃1, 𝑃2. Moreover, (𝑋 ⊃ 𝐶) cannot be a Q-conic bundle germ [47, 50]. The birational germs
of type (k2A) were completely described by Mori [45]. He gave an explicit algorithm for
computing divisorial contractions and flips in this case.

The structure of extremal curve germs of type (k1A) is more complicated. They
were studied in [51]. In particular, the general hyperplane section 𝐻 ∈ |O𝑋 | was computed.
However [51] does not provide a good description of the infinitesimal structure of 𝑋 along
𝐶 neither an algorithm similar to [45]. This was done only in a special situation in [14]. Note
that in the case (k1A) a general member 𝐻 ∈ |O𝑋 | can be non-normal.

Examples. Similar to the example in § 6.5, consider a surface germ 𝐻 ⊃ 𝐶 ≃ P1 whose dual
graph has the following graph of the minimal resolution:

−1• −7◦ −2◦ −2◦ −2◦

where • is a (−1)-curve. The chain formed by white circle vertices ◦ corresponds to a T-
singularity of type 1

25 (1, 4). The whole configuration can be contracted to a cyclic quotient
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singularity 𝐻𝑍 ∋ 𝑜 of type 1
21 (1, 16). Since this is not a T-singularity, the induced threefold

contraction must be flipping.

9. Exceptional curve germs
In this section we assume that (𝑋 ⊃ 𝐶) is an exceptional irreducible extremal curve

germ. As in the previous section we also assume that 𝑋 is not Gorenstein and (𝑋 ⊃ 𝐶) is
not a Q-conic bundle germ over a singular base. According to the classification [38,44,50] the
germ (𝑋 ⊃ 𝐶) belongs to one of following types:

• 𝑋 has a unique non-Gorenstein point 𝑃 which is of type cD/2, cAx/2, cE/2, or
cD/3 and (𝑋 ⊃ 𝐶) is of type (IA) at 𝑃;

• 𝑋 has a unique non-Gorenstein point 𝑃 which is of exceptional type cAx/4 and
(𝑋 ⊃ 𝐶) is of type (IIA), (II∨), or (IIB) at 𝑃;

• 𝑋 has a unique singular point 𝑃 which is a cyclic quotient singularity of index
𝑚 ≥ 5 (odd) and (𝑋 ⊃ 𝐶) is of type (IC) at 𝑃;

• 𝑋 has two singular points of indices 𝑚 ≥ 3 (odd) and 2, then (𝑋 ⊃ 𝐶) is said to
be of type (kAD);

• 𝑋 has three singular points of indices 𝑚 ≥ 3 (odd), 2 and 1, then (𝑋 ⊃ 𝐶) is said
to be of type (k3A).

In each case the general elephant is completely described in terms of its minimal resolution:

Theorem 9.1 ([38,50]). In the above hypothesis assume that the general element 𝐷 ∈ |−𝐾𝑋 |
contains 𝐶. Then the dual graph of (𝐷 ⊃ 𝐶) is one of the following, where white vertices ◦
denote (−2)-curves on the minimal resolution of 𝐷 and the black vertex • corresponds to the
proper transform of 𝐶:

(IC) ◦ − · · · − ◦︸       ︷︷       ︸
𝑚−3≥2

◦ ◦

•

(IIB) ◦
◦ ◦ ◦ ◦ •

(kAD) ◦
◦ − · · · − ◦ • ◦ · · · ◦ ◦

(k3A) ◦
◦ − · · · − ◦ • ◦

Exceptional irreducible extremal curve germs are studied are well (see [38], [55], and
references therein). For flipping ones the general hyperplane section 𝐻 ∈ |O𝑋 | is normal and
has only rational singularities. It is computed in [38] and the flip is reconstructed as a one-
parameter deformation space of 𝐻. For divisorial and Q-conic bundle germs, the situation is
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more complicated. Then the general hyperplane section 𝐻 can be non-normal (see e.g. [54]).
Nevertheless in almost all cases, except for types (kAD)and (k3A), there is a description of
𝐻 ∈ |O𝑋 | and infinitesimal structure of these germs. For convenience of references in the
table below we collect the known information on the exceptional irreducible extremal curve
germs.

type (𝑋,𝐶) references

index 2 germs divisorial, Q-conic bundle [38, § 4], [47, § 12], [51, § 7]

cD/3 flip, divisorial [38, § 6], [51, § 4]

(IC) flip, Q-conic bundle (only for 𝑚 = 5) [38, § 8], [52]

(IIA) flip, divisorial, Q-conic bundle [38, § 7], [53,54]

(IIB) divisorial, Q-conic bundle [52]

(II∨) divisorial, Q-conic bundle [38, 4.11.2], [47]

(kAD) flip, divisorial, Q-conic bundle [38, § 9], [46,47,50]

(k3A) divisorial, Q-conic bundle [38, § 5], [47,50]

Detailed analysis of the local structure of exceptional extremal curve germs allows to extend
the result of Theorem 7.1 to the case of reducible central fiber containing an exceptional
component:

Theorem 9.2 (Mori-Prokhorov [56]). Let (𝑋 ⊃ 𝐶) be an extremal curve germ such that 𝐶 is
reducible and satisfies the following condition:

(*) each component 𝐶𝑖 ⊂ 𝐶 contains at most one point of index > 2.

Then the general member 𝐷 ∈ |−𝐾𝑋 | has only Du Val singularities. Moreover, for each
irreducible component 𝐶𝑖 ⊂ 𝐶 with two non-Gorenstein points or of types (IC) or (IIB), the
dual graph of (𝐷,𝐶𝑖) has the same form as the irreducible extremal curve germ (𝑋 ⊃ 𝐶𝑖).

The proof uses the extension techniques of sections of |−𝐾𝑋 | from a good member
𝑆 ∈ |−2𝐾𝑋 | (see 7.1.2).

10. Q-Fano threefolds
In arbitrary dimension Q-Fano threefolds are bounded, i.e. they are contained in

fibers of a morphism of schemes of finite type. This is a consequence of the much more
general fact [4]. In dimension 3 there are effective results based on the orbifold Riemann-Roch
formula (4.1.1) and Bogomolov-Miyaoka inequality applied to the restriction of the reflexive
sheaf (Ω1

𝑋
)∨∨ to a sufficiently general hyperplane section [33]. In particular, combining (4.1.1)

with Serre duality we obtain

𝜒(O𝑋) =
1
24

(
−𝐾𝑋 · c2 (𝑋) +

∑︁
𝑃

(
𝑚𝑃 −

1
𝑚𝑝

))
where 𝑚𝑃 is the index of a virtual quotient singularity of 𝑋 [66]. Since 𝑋 is Q-Fano,
by Kawamata-Viehweg vanishing theorem [35] one has 𝜒(O𝑋) = 1. Arguments based on
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Bogomolov-Miyaoka inequality shows that −𝐾𝑋 · c2 (𝑋) is positive (see [33]). This gives an
effective bound of the indices of singularities of 𝑋 . Similarly one can get an upper bound of
the anticanonical degree −𝐾3

𝑋
. Moreover, analyzing the methods of [33] it is possible to enu-

merate Hilbert series of all Q-Fano threefolds. This information is collected in [7] in a form
of a huge computer database of possible “candidates”. It was extensively explored by many
authors, basically, to obtain lists of examples representing Q-Fano threefolds as subvarieties
of small codimension in a weighted projective space (see e.g. [6,21]) and references therein).

Examples. • There are 130 (resp. 125) families of Q-Fano threefolds that are rep-
resentable as hypersurfaces (resp. codimension two complete intersections) in
weighted projective spaces [7,21].

• Toric Q-Fano threefolds are exactly weighted projective spaces P(3, 4, 5, 7),
P(2, 3, 5, 7), P(1, 3, 4, 5), P(1, 2, 3, 5), P(1, 1, 2, 3), P(1, 1, 1, 2), P3 = P(1, 1, 1, 1),
and the quotient of P3 by 𝝁5 that acts diagonally with weights (1, 2, 3, 4) [7].

Although the classification is very far from completion, there are several systematic
results. For example, the optimal upper bound of the degree −𝐾3

𝑋
of Q-Fano threefolds was

obtained in [58]. If 𝑋 is singular, it is equal to 125/2 and achieved for the weighted projective
space P(1, 1, 1, 2). The lower bound of the degree equals 1/330 [8] and is achieved for a
hypersurface of degree 66 in P(1, 5, 6, 22, 33). It is known that, under certain conditions,
General Elephant Conjecture 3.1 holds for Q-Fano threefolds modulo deformations [67].
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