
All-Russian Tournament by Correspondence, Chigorin chose him as his spar-
ring partner to prepare for a correspondence match against Wilhelm Steinitz
(1890). Markov had this passion for chess throughout his life. Thus, a year
before his death Markov, having deteriorated eyesight due to glaucoma, took
part in a tournament held at the natural science station in Novy Peterhof,
playing with professor Nikolai Günther without looking at the board.

Andrei Markov died in 1922 in Petrograd, was buried in Mitrofanievsky
cemetery, and re-buried in Volkov cemetery in Literaturnyye Mostki in 1954.

Natalia Lokot
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Markov numbers in arithmetic and geometry

Andrey Andreevich Markov (1856–1922) was an outstanding Russian math-
ematician. His works on probability theory and mathematical analysis are
widely known and generally recognized. The developed by him theory of an
extensive class of stochastic processes with discrete and continuous time com-
ponents, named after him, has countless applications in modern theoretical
and applied research, its inuence is dicult to overestimate. A. A. Markov
made a huge contribution to the theory of continued fractions and the cal-
culus of nite dierences. In the theory of pattern recognition and articial
intelligence tasks most of the algorithms use the concept of a hidden Markov
model, which originates in Markov’s works.

However, A. A. Markov is no less well-known as a specialist in number
theory. He received the rst signicant result in his master thesis On binary

quadratic forms of a positive determinant [11, 13] (see also [10, 12]). One
of the central objects of the dissertation is one Diophantine equation which
subsequently arose in many areas of mathematics, quite far from the original
problem of minimizing of quadratic forms. In this note we will discuss this
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aspect of A. A. Markov’s extensive mathematical heritage.

The Markov equation

The Markov equation is a Diophantine equation of the form

x2

1
` x2

2
` x2

3
“ 3x1x2x3. (3.6)

Solutions of this equation are now known as Markov triples. The Markov

numbers are all natural numbers appearing in these triples. Let px1, x2, x3q be
a Markov triple. Consider the following three transformations

px1, x 1
2
, x3q

px1, x2, x3q
t2

OO

t3

((

t1

vv

px 1
1
, x2, x3q px1, x2, x 1

3
q

(3.7)

where

x 1
i :“

3x1x2x3

xi
´ xi .

According to Vieta’s formulas, new triples

px 1
1
, x2, x3q, px1, x 1

2
, x3q, px1, x2, x 1

3
q (3.8)

are also solutions of the Markov equation, moreover x 1
i ‰ xi . Such a proce-

dure ti is called an elementary transformation or mutation in the element xi ,
and the corresponding triples are called neighboring. It can be shown that if
all three entries x1, x2, x3 are dierent, then all triples (3.8) are also dierent.
Moreover, a mutation in the maximal element of the triple reduces this ele-
ment. For example, if x1 “ maxpx1, x2, x3q, then x 1

1
ă maxpx2, x3q ă x1. It

follows that any solution of the Markov equation is obtained from p1, 1, 1q by
successive application of mutations. All the Markov triples can be written as
a graph in which the neighboring ones are connected by an edge. The graph
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has the form of an innite trivalent tree:

p1,1,1q

p1,2,1q

p1,5,2q

p5,29,2q

p29,169,2q

p2,985,169q p29,169,14701q

p5,433,29q

¨ ¨ ¨ ¨ ¨ ¨

p1,13,5q

p13,194,5q

¨ ¨ ¨ ¨ ¨ ¨

p1,34,13q

p1325,34,13q p1,89,34q

It is easy to see that any Markov number is maximal in some triple. In
1913, Frobenius proposed the following conjecture.

Conjecture (uniqueness conjecture). A Markov triple is uniquely determined
by its maximal element.

Despite numerous attempts, the conjecture has not yet been proven, see
[1] for a very good introduction and historical overview.

The geometry of the Markov surface

Consider the surface X dened in the ane space A3 by the equation (3.6).
Its projective closure X̄ Ă P3 is a nodal cubic with a unique singular point so
that the boundary divisor is the union of three lines forming a “triangle”.

The maps ti are automorphisms of the surface X as an ane variety. One
can check that they generate a subgroup Γ0 Ă AutpXq isomorphic to the free
product

pZ{2Zq ˚ pZ{2Zq ˚ pZ{2Zq.
The complete automorphism group AutpXq is generated by Γ0, permutations,
and sign changes of pairs of coordinates [3]. In this presentation, AutpXq acts
transitively on the set of integer points of the surface X and its subgroup of
index 4, isomorphic to PGL2pZq, acts transitively on the set of Markov triples.

The projection
Ψ : X 99K P2

from the origin is a birational map, i.e. it is one-to-one on nonempty Zariski-
open subsets of U Ă X and V Ă P2. Moreover, Ψ induces an embedding of
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AutpXq into the group of birational transformations of the plane so that all
the elements preserve, up to sign, the symplectic form

du ^ dv

uv
.

Thus, the subgroup of the index 2 in AutpXq can be embedded to symplectic

Cremona group [15].

Markov numbers in approximation theory and quadratic form theory

In Markov’s original work, the equation (3.6) arose in connection with the
problem of nding the arithmetic minimum of binary quadratic forms.

Consider a binary quadratic form

f px, y q “ αx2 ` βxy ` γy 2, α,β, γ P R.

We assume that the form is indenite, i.e. its discriminant

D :“ β2 ´ 4αγ

is positive. The Markov constant of the form f is the number

µpf q :“
?
D

min
1pf q ,

where min
1pf q is the arithmetic minimum:

min
1pf q :“ min

 

|f px, y q|
ˇ

ˇ x, y P Z, px, y q ‰ p0, 0q
(

.

The Markov spectrum is the set of all Markov constants:

M :“
 

µpf q | f is a binary quadratic form with D ą 0
(

.

The forms f and f 1 are called equivalent if they are obtained from each other
by integer coordinate changes. It is clear that the equivalent forms have the
same minimum.

It turns out that the problem of computing the arithmetic minimum of
quadratic forms is closely related to the theory of Diophantine approximations.
The well-known theorem of A. Hurwitz states that for any irrational number
θ there are innitely many rational fractions p

q
P Q satisfying the inequality

ˇ

ˇ

ˇ

ˇ

θ´ p

q

ˇ

ˇ

ˇ

ˇ

ă
1?
5q2
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and the constant
?
5 in the denominator cannot be increased. In this regard,

the following natural denition arises: the Lagrange number for θ P R is the
supremum λpθq of the set of all real numbers λ such that the inequality

ˇ

ˇ

ˇ

ˇ

θ´ p

q

ˇ

ˇ

ˇ

ˇ

ă
1

λq2
. (3.9)

holds for innitely many rational fractions p

q
P Q. Thus, by Hurwitz’s theorem

for the irrational θ we have λpθq ě 1?
5
. The Lagrange spectrum is the set

L :“ tλpθq | θ P Ru

of all possible values of Lagrange numbers. The numbers θ, θ1 P R are called
equivalent if they are contained in the same orbit of the action group GL2pZq
on R by Mobius transformations. It is clear that the Lagrange numbers of
equivalent real numbers are equal.

Note that the exponent 2 for q on the right side of the inequality (3.9)
cannot be increased: as was shown by K. Roth (1955), for any irrational
algebraic number and for any  ą 0 inequality

ˇ

ˇ

ˇ

ˇ

θ´ p

q

ˇ

ˇ

ˇ

ˇ

ă
1

q2`

has only a nite number of solutions for coprime p and q.

The results of Markov

Let m1 “ 1, m2 “ 2, m3 “ 5,. . . be an ordered sequence of all Markov
numbers. Denote

λm “
a

9´ 4{m.

Also, to each ordered Markov triple pm,m1, m2q, m ą m1
ą m2 one can

associate, by a certain explicit rule, an indenite quadratic form

Fm,m1,m2px, y q

which is called the Markov form. Assuming the Frobenius conjecture we can
think that Fm,m1,m2 depends only on the maximal element: Fm,m1,m2 “ Fm.

Theorem (Markov). For an indenite binary quadratic form f px, y q the in-

equality µpf q ă 3 is satised if and only if f is equivalent to a multiple of the

form Fm for some Markov number m.
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Hurwitz noticed that the methods of of the proof of this theorem allows
to obtain immediately a similar result for Diophantine approximations.

Theorem. For an irrational real number θ, the inequality λpθq ă 3 holds if

and only if λpθq “ λm, where m is a Markov number. In this case, the number

θ is equivalent to a root of the equation Fmpx, 1q “ 0.

In particular, it follows that on the interval r0, 3q the Lagrange and Markov
spectra are discrete and coincide:

LX r0, 3q “ MX r0, 3q “ t λn u .

On the contrary, in the right hand side of the real line, these spectra are
continuous: G. A. Freiman in 1975 proved that the Lagrange and Markov
spectra contain the interval rλF, `8s (Hall ray), where

λF :“ 2221564096` 283748
?
462

491993569
« 4.52.

On the other hand, the behavior of Lagrange and Markov spectra on the
interval r3, λFs is quite complicated and still not fully understood.

Markov numbers in geometry

Degenerations of the projective plane

Consider an analytic family tStutP∆ of compact complex surfaces over a disk
∆ Ă C such that for t ‰ 0 the ber St is isomorphic the projective plane P2.
In this situation, the central ber of S0 is called degeneration of P2.

*

*
*

In general, the structure of degenerations of P2 can be quite complicated.
M. Manetti [9] posed a problem classications of degenerations of P2 admit-
ting only quotient singularities, i.e. those degenerations whose singularities
are analytically equivalent to quotients C2{G, where G Ă GL2pCq. This prob-
lem is interesting, important, and motivated by its applications in the theory
of modules of curves and surfaces, as well as in the Minimal Model Program.
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Recall that the weighted projective plane Ppd1, d2, d3q is the set of triples
of numbers px1, x2, x3q ‰ p0, 0, 0q with identication:

px1, x2, x3q “ ptd1x1, td2x2, td3x3q, t P C˚.

Here d1, d2, d3 are natural numbers called weights. We will assume that the
weights are pairwise coprime. For d1 “ d2 “ d3 “ 1 we get the usual
projective plane. Otherwise, Ppd1, d2, d3q has quotient singularities.

Theorem ([7]). If the weighted projective plane is a degeneration of P2, then

it has the form

Ppm2

1
, m2

2
, m2

3
q,

where pm1, m2, m3q is a Markov triple. Conversely, each weighted projective

plane Ppm2

1
, m2

2
, m2

3
q is a degeneration of P2.

A complete classication of degenerations of P2 was obtained in [7], as
well as similar results for degenerations of the two-dimensional quadric and
other del Pezzo surfaces.

Exceptional vector bundles on P2

A vector bundle E on a nonsingular complex projective algebraic variety X is
called exceptional if

HompE ,E q “ C and Ext
qpE ,E q “ 0 when q ą 0.

An ordered collection of vector bundles E1, . . . ,En is called exceptional if all
Ei are exceptional and

Ext
qpEi ,Ejq “ 0 for i ą j and q ě 0.

An exceptional collection is said to be complete if it generates a bounded de-
rived category D

bpXq of coherent sheaves on X. The presence of a complete
exceptional collections imposes very strong restrictions on the variety X. We
will consider only the case of the projective plane X “ P2. In this case, any
line bundle is exceptional and the triple

`

OP2, OP2p1q, OP2p2q
˘

is a complete exceptional collection. Moreover, an exceptional collection on
P2 is complete if and only if it consists of three elements.

159



In the works of A. N. Rudakov [14] and A. L. Gorodentsev and Rudakov
[4] a surprising fact was established: one can dene certain transformations
(mutations) of the complete exceptional collections of vector bundles on P2,
similar to the mutations of Markov triples (3.7). In particular, the ranks of
bundles in complete exceptional collections are exactly Markov triples. These
results have generalizations to arbitrary del Pezzo surfaces [8].

Markov numbers in Lobachevsky geometry

The classical Fricke identity states that for any matrices A, B, C “ AB P
SL2pRq the following equality holds

trpAq2 ` trpBq2 ` trpCq2 “ trpAq trpBq trpCq ` trpABA´1B´1q ` 2.

If the matrices are integer and the commutator ABA´1B´1 is a parabolic
matrix, then trpABA´1B´1q “ ´2 and the numbers

trpAq{3, trpBq{3, trpCq{3
form a Markov triple. This observation allows us to reformulate many ques-
tions about Markov numbers in terms of the action of the modular group
Γ “ PSL2pZq and its congruence subgroup Γp3q on the Lobachevsky plane.

Consider the Poincare modelH (the upper half-plane in C) of the Lobachevsky
plane. The action of a hyperbolic transformation A P Γp3q on the closure H̄

has two real xed points θ and θ1. The circle passing through these points and
perpendicular to the real axis is a straight line in the Lobachevsky geometry,

θ1θ

and its image on the quotient H{Γp3q is a geodesic γA. It turns out that
γA has no self-intersections if and only if λpθq, λpθ1q ă 3 and its length can
be expressed in terms of Markov numbers. The uniqueness conjecture also
has an interpretation in these terms [1]. This approach, using Lobachevsky
geometry was applied by D. S. Gorshkov [5], [6] in order to reprove Markov’s
results in purely geometric methods.

Markov numbers in symplectic geometry

One of the interesting and important problems in symplectic geometry is the
question of the classication of Lagrangian tori in the complex projective

160



plane with a symplectic form equal to the Kähler form of the standard Fubini-
Study metric. In the recent works of R. Viano [16], signicant progress has
been made in this direction. In particular, an innite family of nonequivalent
Lagrangian tori parametrized by Markov triples was constructed.

In conclusion, we note that our brief overview is not complete. Unex-
pected applications of Markov triples continue to appear in various parts of
mathematics. We hope that there will be many more other appearances, as
well as interesting connections between them will be found. Here is what the
outstanding Soviet mathematician B. N. Delone wrote about the master’s
thesis of A. A. Markov [2]:

“This work, highly appreciated by Chebyshev, is one of the most

insightful achievements of the St. Petersburg school of number

theory and, perhaps, of all Russian mathematics.”

Yuri Prokhorov
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