
1 Elementary proof of Borsuk-Ulam Theorem

Borsuk-Ulam theorem states:

Theorem 1. Every continuous mapping of n-dimensional sphere Sn into n-
dimensional Euclidean space Rn identifies a pair of antipodes.

This theorem is widely applicable in combinatorics and geometry. And there
are sufficiently many nontopologists, who are interested to know the proof of
the theorem. But the standard proof of this theorem involves the ring structure
of cohomologies of projective space — the subject hardly understanding by
nontopologsts. The goal of this article is to present an elementary proof of the
theorem. More precisely we present an elementary reduction of high-dimensional
Borsuk-Ulam theorem to 2-dimensional, which is known to have an elementary
proof. Moreover we reduce this theorem almost to 1-dimensional case: it is
enough to proof that the suspension of an odd mapping of the circle is not
homotopic to constant.

By the product we get a new elementary proofs for Brouwer Fixed Point
theorem, which one apples in the Dimension theory to prove Lebesgue theorem
on coverings of Euclidean Space.

Odd mappings of spheres. Let us say that a mapping of one sphere into
another sphere is odd if it takes any pair of antipodes into antipodes. That is
−f(x) = f(−x) for all x — the usual equality to define an odd function . The
following reduction of the theorem 1 was made already in the original Borsuk’s
paper in 1933

Lemma 2. If there exists a continuous mapping of f : Sn → Rn, which does
not identify any pair of antipodes, then there exists an odd continuous mapping
g : Sn → Sn−1.

Proof. Here is the explicit formula for such mapping g(x) = f(x)−f(−x)
|f(x)−f(−x)|

The main new idea is presented by the following Lemma

Lemma 3 (key lemma). If n > 3 and there is an odd PL mapping of Sn to
Sn−1, then there is a continuous odd mapping Sn−1 → Sn−2

Closed subset of the sphere Sn is called simple section between the poles
P,−P if every geodesic arc joining these poles intersects the subset just in one
point. It is easy to see that any two simple sections are homeomorphic to each
other. Hence all simple sections are homeomorphic to Sn−1 — the equatorial
section of the sphere. Every simple section S separates the sphere in two parts,
the connectivity components of Sn \S, containing P and −P respectively. And
we will say that a simple section separates a pair of the sets if these sets belongs
to different components of Sn \ S.

Lemma 4. Let X be a closed subset of the sphere Sn, such that every geodesic
arc joining the poles P,−P meeting X does not meet the antipode −X = {−x |
x ∈ X}. Then there exists a centrally symmetric simple section separating X
and −X.
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Proof. Denote by B,−B the poles of the sphere and denote by S(X) and S(−X)
respectively the projections (from poles) of X and −X respectively onto the
equator of the sphere. Let us choose ε so small that ε-neighborhood of B does
not intersect X ∪−X. Denote by d(x) the distance from x to S(X) and denote
by d−(x) the distance from x to S(−X). Consider the function ψ(x), defined
on S by the formula

d(x)(π − ε) + d−(x)ε
d(x) + d−(x)

(1)

Denote by B(x) the length of geodesic, connecting B with x. Now the simple
section S′ we are looking for, may be introduced by the following way: the
intersection of S′ with geodesic between B and −B passing through x ∈ S is
the point, located on the (geodesic) distance ψ(x) from B.

Proof of Key Lemma. Without loss of generality one can suppose f to be PL
with respect to some centrally symmetric triangulation. Denote by A some point
of the sphere Sn, which is the center of gravity of some n-dimensional simplex of
the triangulation. Then preimages f−1(A) and f−1(−A) are graphes. Indeed,
for any n + 1-dimensional simplex of Sn+1 its intersection with these preimages
represents either interval or emptyset. Let us consider the union of geodesics
joining pairs of point from f−1(A) ∪ f−1(−A) which are not antipodes to each
other. The dimension of this set does not exceed 3, because it is finite union of
joins of geodesic arcs.

Let us pick up a point B ∈ Sn+1 from the complement of the union. Such
point exists due to inequality n > 3. In this case the central projections from
the poles (B and −B) onto the equator of f−1(A) and f−1(−A) do not intersect
each other. Hence by virtue the Lemma 4 there is a symmetric simple section
S separating f−1(A) from f−1(−A). The restriction of f on this sphere has the
image in Sn \ ({P} ∪ {−P}), which is naturally retracted onto Sn−1. As result
one gets an odd mapping Sn → Sn−1.

Lemma 5. If there exists an odd mapping g : S3 → S2, then there exists a
mapping ψ : D3 → S2 with odd restriction onto the boundary such that the
image of upper semisphere of ∂D3 is upper semisphere of S2.

Proof. Let pr : S3 → D3 denotes the restriction onto the unit sphere S3 of
orthogonal projection of R4 onto 3-dimensional horizontal hyperplane passing
through the origin . Denote by pr−1 the inverse mapping of D3 into upper
semisphere of S3. Consider the composition f = gpr−1. Fix poles A,−A ∈
S2. f -preimages of the poles are finite. Choose points B and −B from which
these preimages are projected injectively onto the equator. By the help of the
Lemma 4 one constructs a symmetric simple section S of S2 separating f−1A
and f−1(−A). Let h : S2 → S2 be an odd homeomorphism translating upper
semisphere into the component of S2 \ S, containing f−1A.

Now we define an odd mapping φ : S2 → S2 in such a way: φ(x) for x from
the upper semisphere is defined as point, with projection onto equator equal
to fh(x) with height over equator equal to the distance from x to S, if this
distance is less than 1 and less than the distance from x to f−1A. And the
image coincides with the pole A in other cases. For x from the lower semisphere
φ(x) is defined as −φ(−x).
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Constructed φ transforms upper semisphere into upper semisphere and for
any x ∈ S2 points φ(x) and f(x) are not opposite. Now the mapping ψ : D3 →
S2 we are looking for may be defined in polar coordinates as follows

ψ(r, x) =
{

(2r − 1)φ(x) + (2− 2r)f(1, x), 1 ≥ r ≥ 1
2 ;

f(2r, x), r ≤ 1
2 .

Brouwer Fixed Point Theorem. Let f : Dn → Dn be a continuous map-
ping without fixed point. Then the mapping F (x) = (1−|x|)f(x)+ |x|x is iden-
tity on the boundary (|x| = 1) and has not fixed points in the interior of Dn. In-
deed, the equality x = (1−|x|)f(x)+|x|x implies (1−|x|)f(x) = (1−|x|)x, which
may be true only for |x| = 1. And the following formula for (t, x) ∈ R1 ×Rn

g(t, x) =
{

F (x), t > 0;
x, t ≤ 0.

defines an continuous mapping Sn → Rn, which does not identifies any pair of
antipodes.
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