Lax operator algebras: unexpected outcome,
and a new tool of the theory of integrable
systems

Oleg Sheinman
Steklov Mathematical Institute

Southeast Lie Theory Workshop
College of Charleston
December 16-18, 2012


http://www.mi.ras.ru/~sheinman

Outline

Lax operator algebras

Lax integrable systems

Quantization of Lax integrable systems and 2D CFT



Lax operator algebras

SECTION 1. LAX OPERATOR ALGEBRAS



Lax operator algebras

Geometrical data

m Riemann surface &
m Classical Lie alg. g over C

m Marked points of two kinds:
Py,...,Py € ¥ and
Yseoos VK EL

m Vectors aq,...,ax € C"
associated with 4’s.

Pairs ~, « are referred to as Tyurin parameters, due to the

THEOREM (A.N.Tyurin): Let g = genus ¥, n € Z... Then there
is a 1-1 correspondence between the pairs of sets

Yooy Yng €L, Qf,...,0pg € cpr-1,
and the equivalence classes of the semi-stable holomorphic
rank n vector bundles on .



Lax operator algebras

Lax operator with the spectral parameter on a

Riemann surface

— it is a meromorphic function L on X with arbitrary poles at
P;’s, simple or double poles at the ~’s, holomorphic at the other
points, and having the expansion at a v of the form

L, L_4

Lo = ot t gy Tl iz —2) + Oz~ 2)?)

where z is a local coordinate at v, z, = z(v), and

t
aft, g = gl(n) f Za__kz
Ly ={apt—pal,  g=so(n) —
(aB! + Bal)o, g=sp(2n) L_» = vaalo, g = sp(2n)

a, 8 € C", a is associated with ~, 3 arbitrarily, 0 — is the matrix
of the quadratic form



Lax operator algebras

Lax operator algebras

THEOREM: For given g, («,~, P;), the Lax operators form a
Lie algebra with respect to the point-wise matrix commutator
[L,L'](P) = [L(P),L'(P)] (P € X) (Krichever-Sh., 2007).

This algebra is referred to as Lax operator algebra, and is
denoted by L, or by g.

Examples:
1)Ifg=0,P;=0,P,=00,{y} =2 theng=g®C[z,z7"]
— a loop algebra.

2)Ifg>0,{v} =9 theng=g®.Awhere A consists of
meromorphic functions holomorphic outside {P} —
a Krichever—Novikov current algebra.




Lax operator algebras

Almost graded structure

Lax operator algebras are by no
means graded. Defineg,, C g
by

(@m)i ZM*m i P
(Bm)o =2 j=1(am + bim)Q;,
where Z;‘L aj =N,
Zj,\i1 bj,m:N+g— 1,
|bjm| < BYj,m (N> M)

THEOREM: (1)dimg,, = Ndimg; 2)g= P o
meZ
(3) 3 a constant integer R > 0 such that
m+k+R
Em 8l S D an (1)

h=m+k



Lax operator algebras

Central extensions

A skew-symmetric bilinear form v on £ is called a 2-cocycle if
Y(IX, Y], Z2) + (12, X], Y) + (Y, 2], X) =0

forall X,Y,Z € L.

Given a Lie algebra £, and a cocycle ~, we can construct a new
Lie algebra £ called central extension of £. As a linear space

L=L&C-t
and the bracket is given by

[X+cit, Y + oof] = [X, Y]z + (X, Y)t, [X,{]=0VX € L.

Example. £ = loop algebra, (X, Y) = resg tr(XdY).



Lax operator algebras

Equivalence of central extensions

Equivalently, a central extension of L is a short exact sequence
of Lie algebras

0 c——2-L-¢ 0 (2)
where Im(/) = ker(p) is the center of L.Then L is a central
extension of £ in the above defined sense.

Two central extensions £ and £ are called equivalent if there
exists an isomorphism e (equivalence) such that the following

diagram is commutative
SN
C
N /

(3)

—0.

h)-_>h>



Lax operator algebras

Classification of almost graded central extensions

Geometric cocycle:
YL L) =N resp u(LVOL) = S resq, tr(LVO) L") where
g is a g-valued 1-form, V() = d + ad 6.

THEOREM: 1) If § possesses the same expansion as L at any
y-point, with Bloca = 1, then ~ gives an almost graded central
extension.

2) If g is simple, the only central extension of g, up to
equivalence and normalization of the central generator, is given
by the above cocycle .

3) If g = gl(n) then g has only one more central extension given
by v/ = SN, resp, tr(L)u(VOL).

Example. For a loop algebra, or a KN current algebra 6 = 0,
and v(X, Y) = tr(XdY).



Lax operator algebras

Canonical representation of £

F — the space of meromorphic functions on ¥ with the same
singularities as L. Expansion at a v is of the form

— const - —2
v= z

+ 9o+ O(z - z).
3

L has a natural representation in F. This representa-
tion is almost graded.

Almost grading in F is given by means a certain base (the
Krichever—Novikov base).

Example. For two points P, Q the degree is essentially given by
the order at P.

The £-module F by no means is of vacuum type.




Lax operator algebras

Vacuum representation

Fo/2 — space of semi-infinite forms on F, F>/2 = gF*/?,
00/2
‘7:/( :{lc,1/\/\)c,k/\lc,k+1/\ﬁk+2}

where f; is the Krichever—Novikov base in F.

f,fo/z is a vacuum representation of £

where the vacuum is given by the semi-infinite monomial
fxa1 N fao A ..., and the action by Leibniz rule.



Lax operator algebras

Canonical commutative subalgebra

Given an L-operator, its spectral curve %, is defined by means
the equation det(L(z) — ») = 0. It is an n-fold branch covering
of .

Spectrum K of L is a diagonal matrix defined by the relation
VW[ = KV. The spectrum defines the function sz on ¥;.

LEMMA: 3¢ is meromorphic and holomorphic outside the
pre-images of P-Q-points (in particular, at pre-images of 4’s).

Vise versa, the direct image of such a function is a spectrum of
the operator L(x) = W1 K(3)W.

THEOREM: The maximal subalgebra in £ commuting with an
L € L is isomorphic to the algebra of meromorphic functions on
Y ;, holomorphic outside the pre-images of P-Q-points.



Integrable systems

SECTION 2. LAX INTEGRABLE SYSTEMS



Integrable systems

Lax equations

Lax equation: L=[L M where
L=L(z,o,0B,7,5,...), M= M(z,a,u,-~,...).

It is regarded to as a collection of equations on «’s, §’s, ¥'s, »’s
and the main parts of the expansions of L at P;’s.

M is defined by the same constrains as L, excluding 3loca = 0
and Loa = ka, namely

M_2 M_1 2
(z—2z,)2 + z-z, + Mo + Mi(z — 2,) + O((z - 2,)7)

where

M_p = haalo | |M_1 = (ap! + epat)o




Integrable systems

Hierarchy of commuting flows

D:=>mP;(i=1,...,N),st.suppDn{y} = @.
LP:={LeL | (L)+D>O0outside's}.

Upon a certain (effective) condition a Lax equation defines a
flow on £P.

THEOREM: Given a generic L, there is a family of
M-operators My = My(L) (a = (Pj,n,m),n >0, m> —m;)
uniquely defined up to normalization, such that outside the
~-points My has pole at the point P; only, and in the
neighborhood of P;

Ma(w;) = w; "L"(w;) + O(1),

The equations
aal_ = [L, Ma], 83 = a/ata (4)

define a family of commuting flows on £P.



Integrable systems

Krichever—Phong symplectic structure

We define an external 2-form on £P. For L € £P let W be a
matrix-valued function formed by the eigenvectors of L:
V[ = KV (K — diagonal).

Q:=tr(V1SLASY — W16 A 6K) = str(W— 1 Low)
where 6V is the differential of W in o, 3, . . ..

Let wo be a holomorphic 1-form on £ and

wi=) res, Quo+ » resp, Qup

THEOREM: w is a symplectic form on a certain invariant
manyfold PP ¢ £P.



Integrable systems

Hamiltonians

THEOREM: The equations of the above commutative family
are Hamiltonian with respect to the Krichever-Phong symplectic
structure on £P, with the Hamiltonians given by

1
Ha= — T rese tr(w; ™ML ) dw;

Example. Let D = (wp) . Then Hj are Hitchin Hamiltonians.




Integrable systems

Calogero-Moser systems,

Lax operator:

o(z+qi — qj)o(z - qi)o(q))
o(z)o(z - qj)o(qi — q;)o(qi)

ij = (i#)), Li=pi

2d order Hamiltonian:

]
H:—Eresz otr(z7112) = Zp/Jer

i<j

Tyurin parameters: (qgj, €;), € = (..., dj, . - ) w=>dp; A dg;.



Integrable systems

Calogero-Moser systems,

é j\f) € so(2n), Bt=-B, C!=—-C.

A, is the same as L;; above.

Lax operator: L = <

o2+ q+a)o(z2-9q) ~ _ o(z-g—-q)o(z+a) . .
Bi= Dozt a)lara) 9T e@ez=qolatq)

2d order Hamiltonian:

1
H= —Erestr 1L2 ZP,+ZZ@ gi—q; +2Z@ qi+q))

i<j i<j



Integrable systems

Other examples

1)g=0,a=0(i.e. * = CP', the bundle is trivial), P; = 0,
P, = 0o. Then g = g ® C[z, z~ '] — loop algebra.

It yields a conventional Lax equation with a rational spectral
parameter:

Li=[LM, LMcgaCA N, XeD!

(l.Gelfand, L.Dikii, I.Dorfman, A.Reyman, M.Semenov-Tian -
Shanskii, V.Drinfeld, V.Sokolov, V.Kac, P. van Moerbeke).
Majority of known integrable cases of motion and
hydrodynamics of a solid body.

2) Arbitrary genus, D = (wg) where wyq is a holomorphic 1-form.
Then we obtain Hitchin systems.



SECTION 3. QUANTIZATION OF LAX

INTEGRABLE SYSTEMS AND 2D CFT




Quantization

Sheaf of conformal blocks

L=1[L M
P = {L} — phase space.

{X} — family of spectral
curves over P

Over every {¥,} take the
canonical vacuum £-module
Fo®

Ay acts in F7°/2 by means
s — L(x) = VT K(x)V
Conformal blocks:

C=F R AP F 2.

and family of spectral curves



Quantization

Kodaira—Spencer cocycle

X € Vect(P), d, € Diffioc —
transition function on ;.

Kodaira—Spencer cocycle:

p(X)=d; " 0xd,

THEOREM (SCH-SH, ’05):
p(X) continues to a KN vector
field on X,

(i.e. a global meromorphic
vector field on ¥, holomorphic

) X and family of spectral curves
outside P-Q-points).

Notation: V), is the Lie algebra
of KN vector fields over L.



Quantization

Sugawara construction

V —vacuum £-module. Example: V = ffo/z

Let {A;}, {«'} be the Krichever-Novikov bases of functions and

1-forms, resp., on &, {u;}.
Notation: a(m) is the representation operator of A, in V.

Energy—-momentum tensor: T =3 :a(m)a(n): wmw"
Forec Vet T(e) =) ;. resp(Te).

THEOREM:
1) e — T(e) defines a projective representation of V:

T([e1,e2]) = [T(e1), T(e2)] + A(e1, e2)id

2) [T(e),a(m)] = const - a(eAm)



Quantization

Representation of the algebra C>°(P) of observables

f e C*(P), X;— the corresponding Hamiltonian vector field,
Vx, = 0x, + T(p(Xr)) — the corresponding KZ-type operator.

THEOREM: 1) f — Vi, is a projective representation of the
Poisson algebra of observables;
2) if f, g depend only on the action variables then

[fo, ng] =0.
3) f — V, is a unitary representation.

Proof. 1) follows from  [Vx, Vy] = Vx y] + A(X,Y) - id, VX, Y.
2) by invariance of the complex structure on ¥, along
trajectories (the spectral curve is an integral of motion).

3) by invariance of the volume form wP/p!, p = dim P /2 resp.
Hamiltonian flows, and by unitarity of the Sugawara rep.



Quantization

Seiberg—Witten prepotential

Partition function of a gauge theory: F = [ €"5(¥) Dy where

S is the Yang—Mills action, ¢ runs over gauge fields.

Seiberg—Witten prepotential F is a low energy limit of F.

There is a family of pairs (X, \) where X is a Riemann surface,
A is a 1-form on it. Let a;, b; be the periods of A\. Then Fis a
function of {a;, b;} satisfying the following

Seiberg-Witten equations:

_OF



Quantization

Prepotential and integrable systems

Observation (Gorski—Krichever—Marshakov—Mironov —Morozov):
in all known cases the family of Riemann surfaces is just the
family of the spectral curves of an integrable system fibered
over the phase space of the latter. As for the 1-forms,

A=Wy

» is the spectrum of £ (function on ¥;), wyq is fixed in Lecture 2.

Then
a,:j{%-wo, b/:f%'wo
A B;

are integrals of motion (depend only on the spectrum of Lax
operator). They are dependent, so that

> " daj A db; = 0.
i

Hence the 1-form ), bjda; has potential F obviously satisfying
the Seiberg—Witten equations.



[§ O. Sheinman
Current algebras on Riemann surfaces
DeGruyter, 2012, 150 p.

[ M. Schlichenmaier
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