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Abstract—We study applications of a new class of infinite-dimensional Lie algebras, called Lax
operator algebras, which goes back to the works by I. Krichever and S. Novikov on finite-zone
integration related to holomorphic vector bundles and on Lie algebras on Riemann surfaces.
Lax operator algebras are almost graded Lie algebras of current type. They were introduced
by I. Krichever and the author as a development of the theory of Lax operators on Riemann
surfaces due to I. Krichever, and further investigated in a joint paper by M. Schlichenmaier and
the author. In this article we construct integrable hierarchies of Lax equations of that type.
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1. INTRODUCTION

In [6, 7] I.M. Krichever and S.P. Novikov proposed a technique for finding high-rank finite-
zone solutions to Kadomtsev–Petviashvili and Shrödinger equations. Based on the ideas of these
works and on his own results on effective classification of high-rank pairs of commuting differential
operators [8], Krichever proposed a theory of Lax operators with spectral parameter on a Riemann
surface [4]. In [10] Krichever and the author found that these Lax operators form an associative
algebra and constructed their orthogonal and symplectic analogs, which form Lie algebras. All of
them were called Lax operator algebras. Lax operator algebras form a new class of one-dimensional
current algebras.

In this article we give some applications of Lax operator algebras to integrable hierarchies of
Lax equations.

The applications of current algebras to the theory of Lax equations have a long history. They
were initiated in the works of I. Gelfand, L. Dikii, I. Dorfman, A. Reyman, M. Semenov-Tian-
Shansky, V. Drinfeld, V. Sokolov, V. Kac, and P. van Moerbeke. Basically these applications are
related to Kac–Moody algebras, which appear quite naturally in the context of Lax equations with
rational spectral parameter. In [4] the theory of conventional Lax and zero-curvature representations
with rational spectral parameter was generalized to the case of algebraic curves Σ of arbitrary
genus g. Such representations arise in several ways in the theory of integrable systems (cf. [6],
where a zero-curvature representation of the Krichever–Novikov equation is introduced, or [4], where
a field analog of the Calogero–Moser system on an elliptic curve is presented). Lax operator algebras
appear as an appropriate generalization of Kac–Moody algebras.

The concept of Lax operators on algebraic curves is closely related to A. Tyurin’s results on the
classification of holomorphic vector bundles on algebraic curves [17]. It uses Tyurin data modeled on
Tyurin parameters of such bundles. The Turin data consist of points γs, s = 1, . . . , ng, and associ-
ated elements αs ∈ CPn, where g denotes the genus of the Riemann surface Σ and n corresponds to
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the rank of the bundle. In [4] the linear space of Lax operators is associated with a positive divisor
D =

∑
k mkPk, Pk ∈ Σ. Lax operators are defined as meromorphic n × n matrix-valued functions

on Σ that have poles of multiplicity at most mk at the points Pk and at most simple poles at γs’s.
The coefficients of the Laurent expansions of these matrix-valued functions in the neighborhood
of a point γs must obey certain constraints parameterized by αs (relations (3.4) below). In [10] it
was found that the Lax operators having poles of arbitrary orders at the points Pk form an algebra
with respect to the usual pointwise multiplication, g-valued Lax operators were introduced, and it
was shown that for g = gl(n), sl(n), so(n), sp(2n) over C the space of such operators forms a Lie
algebra with respect to the pointwise bracket (the setup of [4] corresponds to the case g = gl(n)).
We denote this algebra by g. Considering g-valued Lax operators requires certain modifications of
the above-mentioned constraints. It turns out that the orders of poles at γs’s must be set equal
to 2 for g = sp(2n). There is no doubt that by means of appropriate modifications it is possible to
construct Lax operator algebras for other classical Lie algebras.

In the absence of points γs (which corresponds to trivial vector bundles) we return to the known
class of Krichever–Novikov algebras (see [15] for a review). If, in addition, the genus of Σ is equal
to 0 and D is supported at two points, we obtain (up to isomorphism) loop algebras.

Like the Krichever–Novikov algebras, the Lax operator algebras possess an almost graded struc-
ture (Theorem 3.2 below) that generalizes the graded structure of affine algebras. A Lie algebra V
is called almost graded if V =

⊕
i Vi, where dimVi < ∞, and [Vi,Vj ] ⊆

⊕k=i+j+k1

k=i+j−k0
Vk, where k0

and k1 do not depend on i and j.
The known results on central extensions of loop algebras remain valid for Lax operator algebras,

while the technique of proof has undergone significant modifications. For graded current algebras
the problem of classifying their central extensions is considered in a series of articles initiated by
V. Kac [2], R. Moody [11], and H. Garland [1] (see [3, Comments to Ch. 7] for further references).
For Krichever–Novikov algebras the problem was set up in [9] as a problem of classification of almost
graded central extensions, and an outline of the proof was given. A complete classification of almost
graded central extensions is given in [12, 13] for Krichever–Novikov algebras and in [10, 14] for Lax
operator algebras (see [16] for a review).

The theory of Lax operators on Riemann surfaces proposed in [4] includes the construction of
commuting hierarchies and the Hamiltonian theory of Lax and zero-curvature equations, the theory
of Baker–Akhiezer functions, and an approach to the corresponding algebraic–geometric solutions.
In [16] we addressed the problem of generalizing this theory to all Lax operator algebras and made
the first step in this direction (Lemmas 4.1 and 4.2 below). In the present article we construct
integrable hierarchies for such equations. Unfortunately, the result remains a conjecture for the
symplectic algebra. We present all results in a new uniform way instead of treating every type of
classical Lie algebras separately as it was earlier.

2. M -OPERATORS AND TIMES

Let Σ be a compact Riemann surface of genus g with two marked points P+ and P−. For
n ∈ N ∪ {0} we fix K additional points

W :=
{
γs ∈ Σ \ {P+, P−} | s = 1, . . . ,K

}
(2.1)

(K will be specified in Section 5). To every point γs we assign a vector αs ∈ C
n given up to a scalar

factor. The system
T :=

{
(γs, αs) | s = 1, . . . ,K

}
(2.2)

is called Tyurin data below. These data are related to the moduli of holomorphic vector bundles
over Σ. In particular, for generic values of (γs, αs) with αs �= 0 and K = ng the Tyurin data
parameterize semistable rank n and degree ng framed holomorphic vector bundles over Σ (see [17]).
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In the following, let g be one of the matrix algebras gl(n), sl(n), so(n), sp(2n), or s(n), where
the last is the algebra of scalar matrices.

Let M : Σ → g be a meromorphic function. We require that M have the following expansion at
a point γ = γs:

M =
M−2

(z − zγ)2
+

M−1

z − zγ
+ M0 + . . . , (2.3)

where z is a fixed local coordinate in the neighborhood of γ, zγ is the coordinate of γ itself,
M−2,M−1,M0,M1, . . . ∈ g, and

M−2 = λααtσ, M−1 = (αµt + εµαt)σ, (2.4)

where λ ∈ C, µ ∈ C
n, σ is an n × n matrix, the upper t denotes the matrix transposition,

λ ≡ 0, ε = 0, σ = id for g = gl(n), sl(n),

λ ≡ 0, ε = −1, σ = id for g = so(n),

ε = 1 for g = sp(2n),

(2.5)

and σ is a matrix of the symplectic form for g = sp(2n). Here and below we omit the subscripts s
and γ indicating the point γ, except for zγ .

Every M -operator defines a dynamical system on the space of Tyurin data:

żγ = −µtσα, α̇ = −M0α + κα, (2.6)

where the dot denotes the time derivative. We comment on these equations in Lemma 4.1 and
subsequent remarks (see below).

Lemma 2.1. For any two M -operators Ma and Mb and the corresponding times the expression

Mab = ∂aMb − ∂bMa + [Ma,Mb]

is an M -operator too.
Proof. Let us verify that Mab satisfies (2.4).
For an arbitrary g from our list we have

Ma =
λaααtσ

(z − zγ)2
+

(αµt
a + εµaα

t)σ
z − zγ

+ M0a + . . .

and a similar expression for Mb, where λa, λb, ε, and σ = id are subject to (2.5). Next we have

∂aMb = 2(∂azγ)
λbααtσ

(z − zγ)3
+

((∂aλb)ααt + λb∂a(ααt))σ + (∂azγ)M−1,b

(z − zγ)2

+
((∂aα)µt

b + εµb(∂aα
t) + α(∂aµ

t
b) + ε(∂aµb)αt)σ

z − zγ
+ . . . (2.7)

and a similar expression for ∂bMa.
For the commutator we have

[Ma,Mb] =
(1 + ε2)(λb · µt

aσα − λa · µt
bσα)ααtσ

(z − zγ)3

+
(λa∂b − λb∂a)ααtσ + λabααtσ + (µt

aσα)M−1,b − (µt
bσα)M−1,a

(z − zγ)2

+
((∂bα)µt

a + εµa(∂bα
t))σ − ((∂aα)µt

b + εµb(∂aα
t))σ

z − zγ
+

(αµt
ab + εµabα

t)σ
z − zγ

+ . . . , (2.8)
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where λab = 2λbκa − 2λaκb + ε(µt
aσµb − µt

bσµa) and µab = κaµb − κbµa − λaM1bα + λbM1aα −
M0bµa + M0aµb. To obtain these relations, we used equations (2.6) and some additional relations,
in particular, εαtσµ = −ε2µtσα and λαtσα = 0, which are fulfilled in all cases. When computing
[Ma,Mb]−2, we also used the relation

[M−1,a,M−1,b] = (µt
aσα)M−1,b − (µt

bσα)M−1,a + ε(µt
aσµb − µt

bσµa)ααtσ,

which can be verified using (2.4). To obtain [Ma,Mb]−1 in the form (2.8), we substantially used the
relation M t

i,a = −σMi,aσ
−1 for ε �= 0 (which follows from (2.5)) and a similar relation for Mi,b.

Comparing (2.8) and (2.7) (and the corresponding relation for ∂bMa) and using (2.6), we obtain

Mab =
λ̃abααtσ

(z − zγ)2
+

(αµ̃t
ab + εµ̃abα

t)σ
z − zγ

+ . . . ,

where λ̃ab = ∂aλb − ∂bλa + λab and µ̃ab = ∂aµb − ∂bµa + µab. We observe that Mab has the
form (2.3), (2.4). In particular, the order −3 term vanishes because either λa = λb = 0 or ε2 = 1
(which follows from (2.5)). �

Remark. For this reason the expansions of the form (2.3) with the second-order pole are
prohibited in the case of g = sl(n). Indeed, this would require that ε �= 0; hence M t

i = −σMiσ
−1,

which holds only in the case of so(n) or sp(2n).

3. L-OPERATORS AND LAX OPERATOR ALGEBRAS

We define Lax operators (L-operators) as M -operators yielding trivial dynamics by (2.6). Thus,
by definition, every L-operator is a meromorphic g-valued function L on Σ that is holomorphic
outside W ∪ {P+, P−} and is such that, at a point γ = γs,

L =
L−2

(z − zγ)2
+

L−1

z − zγ
+ L0 + . . . , (3.1)

where z is a fixed local coordinate in the neighborhood of γ, zγ is the coordinate of γ itself,
L−2, L−1, L0, L1, . . . ∈ g, and

L−2 = νααtσ, L−1 = (αβt + εβαt)σ, (3.2)

where ν ∈ C, β ∈ C
n, σ is an n × n matrix,

ν ≡ 0, ε = 0, σ = id for g = gl(n), sl(n),

ν ≡ 0, ε = −1, σ = id for g = so(n),

ε = 1 for g = sp(2n),

(3.3)

and σ is a matrix of the symplectic form for g = sp(2n).
Further on, the requirement of the triviality of the dynamics (2.6) is expressed as

βtσα = 0, L0α = κα. (3.4)

In addition, we assume that
αtα = 0 for g = so(n) (3.5)

and
αtσL1α = 0 for g = sp(2n). (3.6)
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Theorem 3.1 [10]. The space g of Lax operators is a Lie algebra under the pointwise matrix
commutator. For g = gl(n) it is also an associative algebra under the pointwise matrix multiplica-
tion.

The Lie algebra g is called a Lax operator algebra.
In [10] Theorem 3.1 is proven for every complex classic Lie algebra case by case by straightforward

computation. In the context of the present paper, a large part of this computation can be omitted
due to Lemma 2.1. This lemma implies that for every pair La, Lb of L-operators their bracket [La, Lb]
is an M -operator and as such is expressed as (2.3) and satisfies (2.4) and (2.5), where λ = λab and
µ = µab are defined by (2.8). Interpreting this in terms of L, we obtain relations (3.1)–(3.3) for
[La, Lb] and expressions for the parameters ν and β of this bracket. We use these expressions
and relations (3.4)–(3.6) for La and Lb to prove (3.4)–(3.6) for the bracket of these operators and
complete the proof.

The algebra g depends on the choice of both the Tyurin parameters and the points P+ and P−,
but we omit any indication of this dependence in our notation.

Consider gl(n) in more detail. In this case L−2 = 0 and L−1 = αβt, where βtα = 0 and
L0α = κα. These constraints imply that the elements of the Lax operator algebra gl(n) can be
considered as sections of the endomorphism bundle End(B), where B is the holomorphic vector
bundle corresponding to the Tyurin data T .

The splitting gl(n) = s(n) ⊕ sl(n) given by

X 	→
(

tr(X)
n

In, X − tr(X)
n

In

)
, (3.7)

where In is the n × n unit matrix, induces a corresponding splitting for gl(n):

gl(n) = s(n) ⊕ sl(n). (3.8)

For s(n) all coefficients in (3.1) are scalar matrices. For this reason, the coefficients L−1 vanish
for all γ ∈ W ; hence, the elements of s(n) are holomorphic at W . Moreover, Ls,0, as a scalar matrix,
has any αs as an eigenvector. This means that, by definition,

s(n) ∼= s(n) ⊗A ∼= A (3.9)

as associative algebras.
Any Lax operator algebra g possesses an almost graded structure (see the Introduction for the

definition).
Assume that all our marked points (including the points in W ) are in generic position and

W �= ∅. Let us choose local coordinates z± at P± and zs at γs, s = 1, . . . ,K. Assume g to be a
simple Lie algebra from our list. For an arbitrary m ∈ Z consider the subspace

gm :=
{
L ∈ g | ∃X+,X− ∈ g such that

L(z+) = X+zm
+ + O(zm+1

+ ), L(z−) = X−z−m−g
− + O(z−m−g+1

− )
}
. (3.10)

For g = gl(n) it is proven above that gl(n) = sl(n) ⊕ A · id, where A is the Krichever–Novikov
function algebra. In this case we set

gl(n)m = sl(n)m ⊕Am · id, (3.11)

where Am is the corresponding homogeneous subspace for A [9]. If W = ∅, we are in the setup of
Krichever–Novikov algebras and use the corresponding prescriptions [9, 15].

We call gm a (homogeneous) subspace of degree m in g.
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Theorem 3.2 [10]. The subspaces gm give the structure of an almost graded Lie algebra on g.
More precisely,

(1) dim gm = dim g;
(2) g =

⊕
m∈Z

gm;

(3) [gm, gk] ⊆
⊕m+k+M

h=m+k gh, where M = g for sl(n), so(n), and sp(2n) and M = g+1 for gl(n).

Corollary 3.3. Let X be an element of g. For each m there is a unique element Xm in gm

such that
Xm = Xzm

+ + O(zm+1
+ ). (3.12)

Proof. From statement (1) of Theorem 3.2, i.e., from dim gm = dim g, it follows that there is
a unique linear combination of the basis elements such that (3.12) is true. �

4. g-VALUED LAX EQUATIONS

In this section, we consider the consistency of Lax equations of the form

Lt = [L,M ], L ∈ g, (4.1)

where L and M are an L-operator and an M -operator, respectively.
Following [4], let LD = {L ∈ g | (L) + D ≥ 0} be a phase space of the Lax system, where

D =
∑

i miPi is an effective divisor on Σ. Let the upper dot mean the time derivative.
Lemma 4.1. At the weak singularity points, the equations for the main parts of L and M,

which follow from (4.1), are fulfilled under the following sufficient conditions:

żγ = −µtσα, α̇ = −M0α + κα, (4.2)

β̇ = M t
0β − Lt

0µ + κLµ − κβ for g = gl(n), sl(n),

β̇ = −M0β + L0µ + κLµ − κβ for g = so(n),

β̇ = −M0β + L0µ + κLµ − κβ − νM1α + λL1α for g = sp(2n),

(4.3)

ν̇ = 2(βtσµ + λκL − νκ) for g = sp(2n), (4.4)

where κL is defined by L0α = κLα. Moreover, the conditions żγ = −µtσα and (4.3) are necessary.
Proof. By a straightforward computation we have

L̇ = 2żγ
νααtσ

(z − zγ)3
+

ν̇ααtσ + να̇αtσ + ναα̇tσ + żγ(αβt + εβαt)σ
(z − zγ)2

+
α̇βtσ + αβ̇tσ + εβ̇αtσ + εβα̇tσ

z − zγ
+ (L̇0 − żγL1) + . . . . (4.5)

Using (2.8) for Ma = L and Mb = M , we obtain

[L,M ] =
(1 + ε)2(−ν · µtσα)ααtσ

(z − zγ)3
+

ν(α̇αt + αα̇t)σ + λabααtσ − (µtσα)L−1

(z − zγ)2

+
(α̇βt + εβα̇t)σ + (αµt

ab + εµabα
t)σ

z − zγ
+ . . . . (4.6)

Note that the second relation in (4.2) is used in deriving the last relation.
If ν �= 0 (i.e., g = sp(2n)), then the order −3 terms are equal if and only if

żγ = −µtσα.
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If ν ≡ 0, then the order −3 terms in (4.5) and (4.6) are both equal to 0. The order −2 terms are
equal if and only if

ν̇ααtσ + żγ(αβt + εβαt)σ = λabααtσ − (µtσα)L−1, (4.7)

where λab is defined after (2.8). By the previous relation we have

ν̇ααtσ = λabααtσ,

which is fulfilled if ν̇ = λab. Note that this relation is always trivial except for g = sp(2n), in which
case λab = 2(λκL − νκ + 2βtσµ) and our relation coincides with (4.4).

In a similar way, comparing the terms of order −1 in relations (4.5) and (4.6), we observe that
they are equal if β̇ = µab, where µab are defined after (2.8). This gives relations (4.3). Since
relations (2.8) themselves are derived under assumptions (4.2), we obtain the lemma. �

Remark. Equation (4.3) for g = so(n) follows from the corresponding equation for gl(n) by the
relations M t

0 = −M0 and Lt
0 = −L0. This equation also follows from the equation for g = sp(2n),

with the corresponding replacement of the matrix σ, provided that λ = ν = 0, which is indeed true
for g = so(n).

Remark. The second condition in (4.2) and conditions (4.3) are not necessary. The statement
remains true if we take α̇ = −M0α in (4.2) and exclude the term κβ from (4.3).

The next lemma shows that equations (4.3) and (4.4) can be discarded. Equations (4.2) are the
most important ones. These are the equations of motion for the Tyurin parameters. They were
substantially employed in [4]. Originally, the concept of moving Tyurin parameters was introduced
in [6], where it was used for an effective solution of Kadomtsev–Petviashvili equations in certain
cases.

Let TLLD denote the tangent space to LD at a point L.
Lemma 4.2. [L,M ] ∈ TLLD ⇔ ([L,M ])+D ≥ 0 outside γ’s, and equations (4.2) are fulfilled

at every γ. In the case g = sp(2n) this is true if αtσM1α = 0.
Proof. In our proof we follow the lines of [4], where the lemma was formulated and proved for

g = gl(n).
Let z be a local coordinate in a (fixed) open set containing a weak singularity γ, and zγ be the

corresponding coordinate of γ.
We identify TLD with the space T D of all meromorphic g-valued functions T such that, at every

weak singularity γ,

T = 2żγ
νααtσ

(z − zγ)3
+

ν̇ααtσ + ν(α̇αt + αα̇t)σ + żγ(αβt + εβαt)σ
(z − zγ)2

+
(α̇βt + εβα̇t + αβ̇t + εβ̇αt)σ

z − zγ
+ T0 + . . . , (4.8)

α̇tσβ + αtσβ̇ = 0, (4.9)

T0α = κα̇ + κ̇α − L0α̇ − żγL1α, (4.10)

where żγ and κ̇ are constants, α̇ and β̇ are constant vectors satisfying relations (4.2), and the divisor
of T outside the points γ is greater than or equal to −D.

Relation (4.8) is modeled on (4.5), which is obtained by the time derivation of (3.1). In partic-
ular,

T0 = L̇0 − żγL1.

Together with the time derivation of (3.4) this gives (4.10). Thus, TLD is embedded in T D.
Let us check the coincidence of dimensions of these spaces. This can be done in quite a uniform
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way, so we show it in the most difficult case of g = sp(2n). We have (T ) + D̃ ≥ 0, where D̃ =
D + 3

∑
γ and deg D̃ = deg D + 3K. By the Riemann–Roch theorem dim{T | (T ) + D̃ ≥ 0} =

(dim g)(deg D + 3K − g + 1). The elements of T D are distinguished in the space {T | (T )+ D̃ ≥ 0}
by the following relations. First, at every point γ we have

T−3 = 2żγνααtσ,

T−2 = ν̇ααtσ + ν(α̇αt + αα̇t)σ + żγ(αβt + βαt)σ,

T−1 = (α̇βt + αβ̇t + β̇αt + βα̇t)σ.

(4.11)

Since the elements on the left-hand side belong to g, (4.11) gives 3 dim g relations. Taking account
of (4.9) and (4.10) gives 2n + 1 relations, and (4.2) gives another 2n + 1 relations. Thus, we have
3 dim g + 4n + 2 relations. These relations contain 4n + 2 free parameters żγ , ν̇, α̇, and β̇. Thus, we
actually obtained 3 dim g relations at every point γ, and the number of these points is K; hence,
we have 3(dim g)K relations. We see that dim T D = (dim g)(deg D − g + 1).

But LD has the same dimension. We can count this in quite a similar way or make use of
Theorem 3.2. Assume that we are in the two-point situation, i.e., D = −m+P+ + (m− + g)P−,
where m− > m+ for simplicity. Then LD = gm+ ⊕ . . . ⊕ gm− . By Theorem 3.2, dimLD =
(dim g)(m−−m++1), which is exactly equal to (dim g)(deg D−g+1). We conclude that dim T D =
dim TLLD; hence, these linear spaces coincide.

Next we prove that if L and M are as above, then [L,M ] possesses properties (4.8)–(4.10), i.e.,
it belongs to T D. The proof is straightforward again. For example, let us show (4.10). Denote
the degree zero term [L,M ]0 of the commutator by T0. Then in the case of g = gl(n) we find by
computation

T0α = α(βtM1 − µtL1α) + (L0 − κ)M0α + L1(µtα). (4.12)

If we replace µtα with −żγ , M0α with −α̇, and denote βtM1 − µtL1α by κ̇, we obtain (4.10). For
other types of g the expression for T0α is more complicated, and we use relations (3.4)–(3.6) to
identify it with (4.10). In the case of g = sp(2n) we also make use of the relation αtσM1α = 0. �

Lemma 4.2 directly implies that if ([L,M ]) + D ≥ 0 outside γ’s and the equations of moving
poles are fulfilled, the Lax equation (4.1) is consistent.

5. COMMUTING HIERARCHIES

For a divisor D =
∑

miPi define a divisor D̃ = D + δ
∑K

s=1 γs, where

K =
{

ng, g = gl(n), so(2n), so(2n + 1), sp(2n),

(n + 1)g, g = sl(n),

and

δ =
{ 1, g = gl(n), sl(n), so(2n), so(2n + 1),

2, g = sp(2n).

Let us define ND as a space of M -operators such that (M) + D̃ ≥ 0 (and µtα = 0 for g = sl(n)
and g = so(2n)).

Lemma 5.1. dim ND = (dim g)(deg D + 1).
Proof. We compute dimND by the Riemann–Roch theorem taking account of additional rela-

tions at the points γ. These are relations determining M−2 and M−1. The number of these relations
at every point γ is equal to δ dim g. We also have free parameters λ and µ. Let r be the number
of these parameters for a fixed γ and rµ be equal to 1 if the relations µtα = 0 are included in the
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definition of ND and to 0 if they are not (for all γ simultaneously). We can think that at every γ
there are δ dim g − r + rµ relations.

Let us write K in the form K = lg, where l is n or n + 1, depending on the type of the classical
Lie algebra. We have

dim ND = (dim g)(deg D + δlg − g + 1) − (δ dim g − r + rµ)lg

= (dim g)(deg D + 1) − (dim g − (r − rµ)l)g. (5.1)

Next, we verify that
dim g − (r − rµ)l = 0. (5.2)

Indeed, for g = gl(n) we have r = n, rµ = 0, and l = n; hence, (r − rµ)l = n2. If g = sl(n), then
r = n, rµ = 1, l = n + 1, and (r − rµ)l = n2 − 1. If g = so(2n + 1) or g = sp(2n), then r = 2n + 1,
rµ = 0, l = n, and (r − rµ)l = (2n + 1)n. Recall that in the case of g = sp(2n) the value r = 2n + 1
is the number of parameters coming from λ and µ, while in all other cases, only from µ. Finally, if
g = so(2n), then r = 2n, rµ = 1, l = n, and (r − rµ)l = (2n − 1)n. In all cases (5.2) is true. �

Following [4], let us fix a point P0 ∈ Σ and local coordinates w0 and wi in the neighborhoods
of the points P0 and Pi. Our next goal is to define gauge invariant functions Ma that satisfy the
assumptions of Lemma 4.2. Let us define a as a triple

a = (Pi, k,m), k > 0, m > −mi, (5.3)

where k and m are integers, with k ≡ 1 (mod 2) for g = so(n) and g = sp(2n).
By Lemma 5.1, for generic L there is a unique g-valued function Ma such that
(i) Ma is an M -operator;
(ii) outside the points γ it has a pole at the point Pi only, and

Ma(q) = w−m
i Ln(q) + O(1);

i.e., the singular parts of Ma and w−m
i Ln coincide;

(iii) Ma is normalized by the condition Ma(P0) = 0.

Theorem 5.2. For g = gl(n), sl(n), so(2n), so(2n + 1) the equations

∂aL = [L,Ma], ∂a =
∂

∂ta
,

define a hierarchy of commuting flows on an open subset of LD.
For g = gl(n) the theorem is formulated and proved in [4].
Proof. It follows from (ii) that ([L,Ma]) + D ≥ 0; hence, by Lemma 4.2, [L,Ma] ∈ TLLD and

the equation ∂aL = [L,Ma] defines a flow on LD.
To prove the commutativity of such flows, it is sufficient to verify that Mab = ∂aMb − ∂bMa +

[Ma,Mb] = 0 identically. By Lemma 2.1, Mab is an M -operator. We prove that this M -operator
is regular at the points of the divisor D. By Lemma 5.1 the space of such operators has the same
dimension as g. Due to (iii) we obtain Mab = 0.

Let us prove that Mab is regular at the points of the divisor D. We repeat here the corresponding
part of the proof of [4, Theorem 2.1]. First, assume that the indices a and b correspond to the same
point Pi; i.e., a = (Pi, n,m) and b = (Pi, n

′,m′). Denote Ma − w−mLn by M−
a and Mb − w−m′

Ln′

by M−
b ; then, by (ii), M−

a and M−
b are regular in the neighborhood of Pi. We have

∂aMb = w−m′
∂aL

n′
+ ∂aM

−
b = w−m′

[Ln′
,Ma] + ∂aM

−
b = w−m′

[Ln′
,M−

a ] + ∂aM
−
b
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and

[Ma,Mb] = [M−
a + w−mLn,M−

b + w−m′
Ln′

] = w−m[Ln,M−
b ] − w−m′

[Ln′
,M−

a ] + [M−
a ,M−

b ].

Hence Mab = ∂aM
−
b − ∂bM

−
a + [M−

a ,M−
b ] at the point Pi, which is a regular expression at this

point. By definition Mab is also regular at the other points of D.
The proof is similar in the case when a and b correspond to different points of D. �
The proof of Theorem 5.2 is basically valid for g = sp(2n) too, except for the reference to

Lemma 4.2, which holds only if αtσM1α = 0 in this case. The problem that remains is to prove the
last property for the operators Ma.

Conjecture. Under appropriate assumptions Theorem 5.2 is also true for g = sp(2n).
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