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ELLIPTIC AFFINE LIE ALGEBRAS 

O. K. Sheinman UDC 517.9 

In [i] I. M. Krichever and S. P. Novikov introduced a natural generalization of the 
Kac-Moody loop (current) algebras and considered their central extensions. Specifically, 
let ~ be a finite-dimensional complex simple Lie algebra, F be a compact algebraic curve 
over G with two distinguished points P±, and let ~r denote the algebra of the meromorphic 
functions on F that are holomorphic off P±. The algebra of meromorphic loops (currents) on 
the curve F is defined to be the following Lie algebra G: 

G = ~ ®c ~r. (0.1) 

If r is a curve of genus 0, then ~r is the algebra of Laurent polynomials in one 
variable, and G is isomorphic to one of the Kac-Moody loop algebras. In this paper we con- 
sider the case of curves of genus I. Following the traditional pattern of construction of 
affine Lie algebras [3, 4], in Sec. 1 we study 2-dimensional extensions of the algebras (0.I), 
in which one of the dimensions corresponds to the center, while the second corresponds to 
some vector field e on F. We consider some distinguished extensions, denoted below by 

= ~(e). 

In Sec. 2 we consider invariant symmetric bilinear forms on G. On an affine Lie alge- 
bra there is a canonical invariant form specified by the condition of orthogonality of the 
Laurent monomials with the sum of degrees different from zero. For algebras of the type 
(0.i) that condition does not admit a straightforward generalization in view of the absence 
of a grading (one has only a structure of quasi-graded Lie algebra [i]). We show in Sec. 2 
that one can replace it by the condition of extendability of an invariant form to the 2- 
dimensional extension G(e). If e has m zeros in the domain F\{P±}, then on G(e) there exist 
m + I independen t invariant symmetric bilinear forms. 

In Sec. 3 we establish a correspondence between loop algebras of the type (0.i) and 
complex Coxeter Crystallographic groups (CCC-groups for short), introduced and classified 
in [5, 6]. Specification of a CCC-group and of P± determines the algebra (0.i) uniquely 
up to an isomorphism of quasi-graded algebras (Theorem 3.1), One can conjecture that the 

CCC-group is connected with the Weyl group of the algebra G(e). 

In Sec. 4 we consider the orbits of the adjoint action of a loop group. There we devel- 
op the ideas of the papers [4, 7] and we exhibit a connection between the orbits of the ad- 
joint action and the monodromy equation on the elliptic curve F. We obtain a sufficient 
condition for membership of two elements in the same orbit in terms of the monodromy group 
of that equation (Theorem 4.1). We also consider the connection between orbits and CCC- 
groups. 

The authors thank I. M. Krichever for numerous fruitful discussions. 
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i. Algebras of Meromorphic Loops and Their Extensions 

Let F be an analytic curve with periods 2~ and 2~'. Then ~r can be represented as 
a space of elliptic functions holomorphic off the points z± = ±z0, and one can introduce in 
it a basis {Ai}, where i runs through the half-integers [I]: 

a i -1 /2  (z - -  ze) 0 (z -+- 2izo) 

Ai (z) ---- ~+1/2 (z -]- zo) o ((2i -- i) Zo) 
I ,~+~,'~ (2zo), i 4: ----~-.  ( 1 . 1 )  

Here o(z) is the Weierstrass o-function. The function A_I/2 can be chosen to be of the form 

~* (~) o 2 (izo) ( 1 . 2 )  
A - 1 / 2  ( z )  = o (z  -7  zo) a (z - -  zo) cs 2 (z0) " 

The central extensions of the algebra ~r are described by means of cocycles of the 
form [I] 

i 
¥ (A~, At) = ~ ~ AidAj. ( 1 . 3 )  

c 

Consider the class of contours that are homologous to a small contour which surrounds one 
(any) of the points z±. We denote this class by C O and call it the class of separating 
contours. The separating contours, and only them, enjoy the property that the correspond- 
ing cocycle y is local in the sense that ~(Ai, Aj) = 0 for li + j[ > 1 [i]. In what follows 
we shall consider only this cocycle, i.e., we put C = C o . 

Let (., .) denote the Killing-Cartan form of the finite-dimensional Lie algebra $ . 
Then on the Lie algebra G one can define a cocycle ~ by the rule 

(xA i, yA j) = (x, V) Y (A i, A j) 

(where x, y ~ 9), and then use it to define the central extension 

(1.4) 

G = G ® C c  

of G, in which the commutator is specified by the relations 

( t . s )  

[xAi, yAj] = Ix, y ]A~AI+  ~ (xAi, yAj)c,  [xAi, c ] = O  for  a l l  ±." ( 1 . 6 )  

I n  t h e  Kac-Moody  t h e o r y  one  c o n s i d e r s  e x t e n s i o n s  o f  t h e  a l g e b r a  G by means  o f  t h e  o p e r -  
a t o r  zS/Sz. An analogue for the present situation is the following assertion. 

Proposition i.i. Let e be a meromorphic vector field on F that is holomorphic off z±. 
Then the space 

G = G @ Cc @ Ce 

with the operation [-, -] specified by relations (1.6) and the relations 

( i .7)  

[e, xAi] = --[xAi,  e] = x (eAi), [e, ~ = 0 ( 1 . 8 )  

is an (m + 4)-graded Lie algebra, where m is the number of zeros of e in the domain F\{z±} 
(here eA i is meant as the standard action of a vector field on a function). 

Proof. Let us verify the Jacob± identity. A straightforward computation shows that 

[e, [xA~, yA~]] = [x, y] (e (AiAj)), 
[[e, xA~], yAj] -[- [xA~, [e, yAj]] = [x, y]((eA~) A~ + A i (eA~)) --I- 

q- (x, y)(? (eAi, Aj) + ? (Ai, eAj)) 

for all i and j. 

Therefore, a necessary and sufficient condition for the fulfillment of the Jacob± 
identity is 

~, (eAi, A j) + y (Ai, eAj) = 0, 

Let us show that this condition is indeed satisfied. 
tor field e on F that is holomorphic off z± is [i] 

i, ] : --oo, co. (1.9) 

The general form of a meromorphic vec- 
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e (~) = E (z) ~ ,  ( i .  i 0 )  

where E(z) • ~r. Using (i.i0) and the definition (1.3), we obtain relation (1.9) by a 
simple integration by parts on a closed contour. 

We assign to the vector field e of the Lie algebra G the grade 0. Suppose e has a zero 
of mu!tiplicity p at z+ and a pole of multiplicity q at z_. A count of zeros and poles shows 
that eAj can be written as a linear combination: of the functions A k with k = j + p - n, ..., 
j + q + i, where n = 0, i (see [I, Sec. 3]). The number of indices in the indicated linear 
combination is q - p + 3 + n. But by the theorem on the number of zeros and poles of a 
meromorphic function, q - p = m. The proposition is proved. 

Let us examine the structure of G in more detail. Let el, ..., en_l, hi, ..., hn_i, 
fi ..... fn-i be canonical generators of the Lie algebra $, A = (Aij) be the Cartan matrix 
of the affine Lie algebra corresponding to $ and the identity automorphism of its Dynkin 
scheme [3]. Set e n = f@A3/2, fn = e@A-3/2, where, as customary in the theory of affine Lie 
algebras, e is the highest root of the algebra g , e 8 is the corresponding root vector, 
f8 = e-8, 2h8 = [ee'(f@]'z) and ~ = ~(As/2, A_~/2) is the value of the cocycle (1.3). Also, 
set h±I/2 = hoA±l/2 

Proposition 1.2. i °. The elements el, fi, hi (i = I, ..., n), h±i/2, e, cgeneratethe 

lie algebra G. 

2 ° . The following relations hold: 

[hi, h~] = [hi, h±l /~  = [ h l / v  h-i~2] = O, 

[hi, ej] = A i j e j ,  [hi, ~ ]  = - - A i f f ] ,  

( ad  ei)-A'j+iej = (ad  /i)-A~J+l~ = 0 

f o r  a l l  i ,  j = 1 . . . .  , n ,  w h e r e  h n = h i / 2 .  

[el, fj] = 6ijh j except for the case i = j = n; [e n, fn] = -'C~hl/2- ~h-l/2 + ~C, where 

and ~ are determined from the relation A3/2A_3/2 = a + ~A_i/2, which holds in the algebra 
~ r  [i]. 

Further, 

[e,  ei]  = [e,  1~] = [e,  h i ]  = [e,  h i /2 ]  = 0  ( i  = t . . . . .  n - -  t ) .  

And finally, 

Ih - i / ,  [h - i / v  e}~)]] = I [ e (±b4  ,zn-1, , e ~ ) ]  - 2 - A , 1  (___+ × j ] i  • . .  1 , - l j ~ ,  ___+ 2L [h- l lv  "+ 

- -  r ( ~ )  I t  l n - I  1~ * $  (~) 
+ ~ tes e l .  . . e~-l e~l) + ~ e j  , j = 1 . . . . .  n - - t ,  

where K, X, D, ~ are determined from the relations [i] A_I/2 2 = KA-3/2 + IA-i/2 + D + vA3/2; 

ej (+) = ej, ej (-) = fj, e = £z~i + ... + £n_ian_i is the decomposition of the highest root 

8 into simple roots, and [...] denotes the chain of commutators of the form [., [-, [-, ["] 
....] .] .]. 

In addition to the relations listed above there are two more, which define the action 
of e on en, fn, and h-i/2, whose explicit form we omit. They follow from structure decompo- 
sitions of the form 

e A j  = ~ r ~ A j + s +  r j ,  ( 1 . 1 1 )  
$ 

the precise formulation of which can be found in [i, Sec. 3]. 

The problem of the completeness of the listed relations remains open for the moment. 

The proof of 1.2.1 ° reduces to the observation that the functions A±i/2, A±3/2 gener- 

ate the algebra ~r, which in turn is obvious. Assertion 1.2.2 ° follows from the Cartan 
relations in the Lie algebra 9 and the structure formulas for the algebra ~r [I]. 
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A Cartan subalgebra of G is defined to be a subalgebra of the form 

= ~ ® z ® ce, ( 1 . 1 2 )  

where ~ is a Cartan subalgebra of ~. We remark that in ~ there is another maximal commuta- 
tive suba!gebra, not conjugate to it, namely ~_I/2~OAv/2~OZ. 

For a special choice of the vector field e the algebra G possesses an analogue of a 
Borel subalgebra. Let e = A3/2 (z) 3/8z, where Aa/2 (z) is given by formula (i.i) (then 

F 
e(z) = z(l + O(z)) 3/3z in the neighborhood of the point z+). Let ~± denote the subrlngs 
of ~r generated by the functions Aj, ij e 3/2. 

Proposition 1.3. i °. In the case of the vector field e chosen as above the adjoint 
representation of the subalgebra ~ on G leaves invariant the subspace g ~  , and its matrix 
in the basis {x~Ajl~ e R(S) j e 3/2} of this subspace is triangular (here R(S) is the root 

system of the Lie algebra Si. 

2 °. The diagonal elements of the matrix of the adjoint representation of the subalge- 
bra ~ coincide with the affine roots ~ e R(~) (including ~ = 0). 

3 ° . The matrix of the adjaint action of the element e = A3/2 3/8z has the minimal 
number of diagonals above the principal diagonal among the matrices of all fields that have 

the property i °. 

Proof. i ° follows from formulas (i.ii) for the action of vector fields on functions 
[i], according to which 

eAi = (i -- 1/2) A, q- . . . .  i > 3/2, 

where the dots denote a sum of a finite number of terms with j > i. 

2 ° . Let x~ e 9 be a root vector belonging to the root e ~ R(9). Then for i = n + 1/2, 
xeA i is a weight vector of weight ~ + n of the subalgebra ~ modulo a finite sum of loops in- 
volving Aj with j > i (x~ e ~ for ~ = 0). 

3 ° . In view of Proposition I.I, this assertion reduces to the field e having one zero 
in the domain F\{zi} (the only field with no zeros in that domain, 8/8z, does not leave 
invariant the subspace ~Q~ ). The proposition is proved. 

Remark i. It is not difficult to show that e = A3/2 (z) 8/8z is the unique (up to pro- 
portionality) vector field on which the minimum of the number of diagonals of the matrix of 

the adjoint representation of the subalgebra ~ is realized. In fact, let p [q] be the order 
of the field at the point z+ [resp., z_]. If to the field e corresponds the minimal number 
of diagonals, then, in view of the proof of assertion 3 ° of Proposition 1.3, e has one zero 
in the domain F\{z±}, and hence p + q + 1 = 0. Suppose j e 3/2. The orders of the function 
eAj at the points z+ and z_ equal p+ = j + p - 3/2, and respectively p_ = -j + q - 3/2 = 
--J -- p -- 5/2. For sufficiently large j, p+ > 0 > p_ and IP-I > IP+[" Therefore, IP+I and 
IP-I are the orders at the point Z+of the terms with the minimal and respectively the maxi- 

mai indices in the decomposition eAj = ~ liAi . The index k of the minimal term is found 

from the relation p+ = k - 1/2, i.e., k = j + p - i. From the condition that the action 
of the field e be triangular it follows that k = j, i.e., p = I. Finally q = - p - i = 
-2. The vector field e with orders p = I, q = -2 at the points z+, z_ is uniquely determined 
and coincides with the field Aal 2 8/8z [i]. 

2. Invariant Symmetric Forms 

On the Lie algebra G there are infinitely many linearly independent invariant symmetric 
bilinear forms. Indeed, to every meromorphic differential de on F that is holomorphic off 
the points z± there corresponds the symmetric bilinear form 

= ( 2 . 1 )  
Co 

LEMMA 2.1. The symmetric bilinear form B e is G-invariant. 
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Proof. By definition, 

B~ ([xAi, zA~], yAj) ~ B~ ([x, z]AiA~, yAj)= ([x,z],v) 2~i ~ AiAjA~dm, 

(xAi, [zA~, yAj]) = B~(xAi, [z, y] A~Aj) -- (x,[z,2~ v])~AiAjA~d~.  Bo 

Therefore, the G-invariance of the form B e follows from the ~-invariance of the form (., .). 
The lemma is proved. 

In this section we show that the condition of prolongation to the algebra G allows one 
to single-ou£ a unique invariant form or a finite number of such forms depending on the num- 
ber of zeros of the vector field e in the domain F\{z±}. 

Proposition 2.1. For any meromorphic vector field e = e(z) on F that is holomorphic 
and has no zeros off the points z± there is exactly one invariant symmetric bilinear form 

<.,~> on ~ with the following properties: 

i) <xA, c> = <xA, e> = 0 for all x e $, A e~,r; 

2) <c, e> = I; 

3) the form <., .> on the algebra G admits the representation <xA, yB> = (x, y) <A,B>F, 

where x, y e g, A, B e ~r, and <., ">F is a symmetric bilinear form on ~r with the following 
properties: 

4) <AB, C> F = <A, BC> r for all A, B, C e ~r; 

5) <eA, C> = -<A, eC> for all A, C e ~r 

Moreover, <., ">F is necessarily of the form 

i 
<A,B>r=~ A(z)B(z) Ed--z(z ) , ( 2 . 2 )  

co 

where E(z) is determined from the relation (I.I0). 

Let us prove the following lemma. 

LEMMA 2.2 Under conditions 1)-5) of Proposition 2.1, the form <., .> is G-invariant 
if and only if the relation 

<eA, B>r = ~ (A, B) 

h o l d s  f o r  a l l  A, B e ~ r  where  X i s  d e f i n e d  by f o r m u l a  ( 1 . 3 ) .  

P r o o f .  P i c k  a r b i t r a r y  x ,  y ,  z e ~ r ,  a i  ' b i  e C ( i  = 1, 2,  3 ) .  Deno te  X = xA + a l c +  
b l e ,  Y = yB + a2c  + b2e ,  Z = zC + aac  + bae .  A c o m p u t a t i o n  shows t h a t  

<[X, Y], Z> = ([x, y], z) <AB, C>r + bl (y, z) <eB, C>r --  
- -  b 2 (x, z) <eA,  C>r + b3 (x, y) ~ (A, B), ( 2 . 3 )  

<X' [Y, Z]> = (x, [y, z]) <A, BC>r -I- b2 (x, z) <A, eC>r - 
- b 3 (x, y) <A, eB>r + b~ (y, z) y (B, C). ( 2 . 4 )  

The invariance of the form <., .> means that the left-hand sides of the equalities (2.3) and 
(2.4) coincide. In view of the 9-invariance of the form (-, -) and properties 1)-5) the 
right-hand sides of equalities (2.3) and (2.4) coincide if and only if the relation of Lemma 
2.2 holds for all A, B e~ r. The lemma is proved. 

The proof of Proposition 2.1 follows readily from Lemma 2.2 upon observing that in view 
of the definition (1.3) of the cocycle y there is a unique symmetric bilinear form on ~r 
satisfying the condition of Lemana 2.2, namely, the form (2.4). 

The unique vector field with no zeros in the domain F\{z±} is 

0 (2.5) 
e (z )  = ~ r "  

By Proposition 2.1, to e there corresponds the unique invariant symmetric form on G 
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(x, y) ~ A B  dz. <xA -6 alc -~ ble, yB .q- a2c + b2e > = alb~ "+- b~a~ -+- 
C~ 

( 2 . 6 )  

In the general case, when the field e is of the form e = E (z) 8/3z and the function 
E (z) has m zeros in the domain r\{z±} there are m + I invariant symmetric bilinear forms 

<xA -k- alc + bxe, yB -}- a2c -a t- b2e> = alb~ "+- bla2 ~ (z, y) ~ AB dz ( 2 . 7 )  
- -  2~i  J ~ ' c 

where C runs through the homology classes of separating cycles on the curve F with the points 
zi and the zeros of the function E removed. 

3. Elliptic Affine Lie Algebras and Crystallographic Groups 

Turning now to the discussion of the connections between elliptic affine Lie algebras 
and crystallographic groups we introduce the notions of a Bernstein-Shvartsman system and 
of a Coxeter crystallographic group (CCC-group [5, 6]). 

Let R(g) be the root system of the Lie algebra ~, W be its Weyl group, and Z = rank 8. 

Definition 3.1. A Bernstein-Shvartsman system is a collection consisting of two~- 
dimensional W-modules M I and M%, two full-rank lattices T l c M I and T c M2, an operator A: 
M2 ~ Mz, and a complex number ~, Im¢ > 0, such that 

I 0. the representation of W in the space M i (i = i, 2) is equivalent to the standard 
representation of W in C~; 

2 ° . the semi-direct product W i = WT i is an affine Weyl group in the space M i (i = i, 2); 

3 ° . A is an isomorphism of W-modules and AT 2 c TI; 

4 ° . Tx = A-Ix for all x e M I. 

The operator A is uniquely determined by condition 3 ° up to an integral constant factor. 
Let us make the convention that A is the "minimal" operator with these properties. 

The Bernstein-Shvartsman systems were introduced in [5, 6] under the name of bases; see 
also [I0]. According to the classification obtained in [5, 6], the pair of lattices TI, T 2 
can be of two types: T l = T 2 = L(S) and T I = L(S), T~ = L(sV), where S is a finite root 
system, S v is the dual root system, and L(S), L(S v) are the lattices generated by S and S v, 
respectively. Here we shall consider only systems of the first type: 

T~ ~ T~ ~ L (S). 
F o r  g i v e n  A and x ,  i n  t h e  s p a c e  M~ ® M 2 t h e r e  i s  

c o n d i t i o n  4 ° o f  D e f i n i t i o n  3 .1  i s  s a t i s f i e d  [ 1 0 ] .  We 
with that complex structure. 

(3.1) 

a unique complex structure for which 
shall consider M I • M 2 as being endowed 

Definition 3.2 [5]. The CCC-group corresponding to a Bernstein-Shvartsman system satis- 
fying condition (3.1) is the group generated by the reflections in the hyperplanes ~(x) = 
m, where x e M I • M 2 and ~ is an arbitrary root of the form ~ = ~ + n (E e S), m, n e zZ. 

As an abstract group the CCC-group is equal to the semi-direct product of W and the 
lattice T I ® T 2 [6]. As a crystallographic group the CCC-group is determined by a class of 
Bernstein-Shvartsman systems with modularly-equivalent numbers ~ (and all the other param- 
eters identical) [5, 6]. 

Let us show how one can attach a Bernstein-Shvartsman system and its CCC-group to a 
loop algebra G. 

As it follows from results of [2], the dual space G* of the loop algebra G consists of 
the ~*-valued meromorphic differentials on F that are holomorphic off the points z±. Let 
H c G* be the subspace of the ~*-valued differentials that are holomorphic everywhere on F, 
where 9" is the dua~ space of the Cartan subalgebra ~ of g. Let Q denote the lattice gener- 
ated in ~* by the roots of the Lie algebra~. Now consider the lattice generated by the 
periods of the differentials of the form Idze H with % e Q (it is isomorphic to Q ~ L, where 
L is the lattice of periods of the elliptic curve F), and the space generated by this lattice 
(it is isomorphic to 9" ®Z h). Set L = LI~ L2, where L I and L 2 are the lattices of the a- 
periods and respectively the b-periods of the elliptic curve r. 
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As the modules M I and M 2 we take M i = 9' QzLi, i = i, 2. The action of the Weyl group 
on ~$ carries over to M I and M 2. Set < = ~'/m, where ~ and ~' are the half-periods of the 
curve F. Define the operator A: M2 + MI by the condition 

A-': ~(~ ! ~ ®  (~l) ( ~ * ~  l~L1) .  

It is readily seen that A commutes with the action of W, i.e., we indeed produced a Bernstein- 
Shvartsman system. To a modular transformation of the number ~ there corresponds a change 
of the canonical basis of cycles on the curve r, so that our constructioin uniquely associ- 
ates a CCC-group to the Lie algebra G. 

THEOREM 3.1. There exists a bijective correspondence between the loop algebras of the 
form (0.1) on elliptic curves, given up to an isomorphism of quasi-graded Lie algebras, and 
the collections consisting of a CCC-group that satisfies condition (3.1), and a complex 
number z0, given modulo the numbers i, • (where • corresponds to the CCC-group). 

Proof. We showed above that to the loop algebra G there corresponds in unique manner 
a CCC-group satisfying condition (3.1). 

Conversely, a class of equivalent CCC-groups that satisfy condition (3.1) is specified 
by a finite root system and a complex number T, Im~ > 0, given up to a modular transforma- 
tion. From these data one recovers in unique manner an elliptic curve F with periods i, 
T. Also, from the given z 0 one uniquely recovers the pair of distinguished points z± = 
±z 0 on F. The elliptic curve together with the pair of distinguished points uniquely define 
a loop algebra of the form (0.i). The theorem is proved. 

4. Orbits 

The elements X = X(z) of the algebra G will be referred to as elliptic loops (currents) 
in the algebra ~ . 

Definition 4.1. A group loop (loop in the group exp g) is defined to be a map g: 
F ~ exp 9 that is holomorphic everywhere, except possibly for the points ±z 0 and the zeros of 
the vector field e. 

The group loops form a group, denoted T G. Clearly, T G contains all functions of the 
form exp X, X • G. 

In this section we develop the ideas of the papers [4, 7], where a connection is exhib- 
ited between the adjoint action of a loop group of an affine Lie algebra and the gauge trans- 
formations of the monodromy equations corresponding to loops in the algebra. Therein the 
orbit of an element is given by the monodromy operator of the corresponding equation, regarded 
to within conjugation. 

Let g e T G. Let us define the operator of the adjoint action, Ad g. 

Definition 4.2. If the vector field e has no zeros off the points ±z0, we put 

(Adg) (ac + be + X )  = ac + be + g X g  -1 - -  bEg'g -I + 
b 

+ (<Eg-~g', X> -- -5- <Eg'g-~, Eg'g-'>) c, (4 .1 )  

where X • G, a, b e C, e = E (z) 8/8z. We wish to emphasize that in the case where the 
vector field e has no zeros in F\{±z0} on the algebra G there is only one invariant symmetric 
bilinear form <., .>. The motivation behind Definition 4.2 follows from Theorem 3.1.5 of [4], 
where formula (4.1) is a consequence of the definition Ad expX = exp ad X. 

Now let us consider the case where the field e has m zeros z~ ..... z m (m > 0) on 
F\{±z0}. Then, as shown in Sec. 2, there exist m + 1 independent invariant symmetric bilinear 
forms <., ">£ (l = 1 ..... m + i) on G, which correspond to the homology classes of separat- 
ing cycles on F\{±z 0, z I, ..., Zm}. The right-hand side of (4.1) depends in essential manner 
on the choice of one of the forms <-, -> £ In order to get a well-defined adjoint action, 
we introduce independent central elements ci, ..., Cm+l, which correspond to one and the same 
cocycle ~ (Sec. i). 

Definition 4.3. If the vector field e has m zeros off the points ±z0, we set 
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(Ad g) (a~cz + be + X )  : atc~ + be + gXg  -i - -  bEg' g -i  + 
b 

+ (<Eg-ig ', X>~ - -  --~ <Eg'g -~, Eg'g-l>~)c~, • 

where  X, a ,  b ,  e h a v e  t h e  same meaning as  in  D e f i n i t i o n  4 . 2 ,  and summation i s  c a r r i e d  ou t  
o v e r  t h e r e p e a t e d  i ndex  I .  A l l  e n s u i n g  a rgumen t s  w i l l  u se  D e f i n i t i o n  4 . 2 ,  k e e p i n g  i n  mind 
t h a t  t h e y  a l l  g e n e r a l i z e  i n  o b v i o u s  manner t o  t h e  mase m > 0. Here we s h o u l d  m e n t i o n  t h a t  
t h e  g roup  loop  g,  c o n s t r u c t e d  be low in  t h e  p r o o f  o f  Theorem 4 . 1 ,  i s  a n a l y t i c  o f f  t h e  p o i n t s  
±z 0 f o r  m = 0, and ha s  s i n g u l a r i t i e s  a t  t h e  p o i n t s  z l ,  . . . ,  z m f o r  m > 0, and t h e r e f o r e  i t  
i s  i ndeed  n e c e s s a r y  t o  c o n s i d e r  such  l o o p s .  

To e a c h  e l e m e n t  X = X(z)  + ac + be we a s s o c i a t e  t h e  c o r r e s p o n d i n g  monodromy e q u a t i o n  
on t h e  c u r v e  F: 

bE (z) u' (z) = u (z) X (z). (4.2) 

The point z = 0 is a regular point of the loop X(z), and so we may consider the germ 
of the solution of Eq. (4.2) with initial condition u(0) = I (I is the identity matrix). 
We term this solution fundamental. 

Pick an arbitrary contour z = z(x) on the curve r, which starts and terminates at the 
point z = 0, and continue the fundamental solution analytically along this contour. This 
results in a solution of the same equation, but with a different initial condition 

HI(0 ) ~ ~(~),where ~(~)~exp g. 

Definition 4.4. The element gz(~) e exp g is called the monodromy operator of Eq. (4.2) 
along the contour z = z(~). 

Definition 4.5. The group generated by the monodromy operators along all closed con- 
tours with distinguished point z = 0 on the curve F is called the monodromy group of Eq. 
(4.1) on r. 

From the general theory of monodromy equations [8, 9] it is known that the monodromy 
operator depends only on the homotopy class of the contour z = z(x) on the elliptic curve 
F with the singularities of Eq. (4.2) removed; these singularities include the poles of the 
elliptic loop X(z),the zeros of the vector field e = E(z) 8/8z - among them, the points ±z 0. 
As one can easily show, the monodromy group is finitely generated, with generators Me, Me. , 
M±, Mz, .... M m and relations 

M o M o , M - ~ I M ~  := M+M_M1. .  . . • Mm, ( 4 . 3 )  

where  M e ,  M e ,  a r e  t h e  monodromy o p e r a t o r s  a l o n g  t h e  b a s i s  c y c l e s  o f  t h e  c u r v e  F, M± a r e  t h e  
monodromy o p e r a t o r s  a t  t h e  p o i n t s  2z0 ,  and Mz . . . . .  M m a r e  t h e  monodromy o p e r a t o r s  a t  t h e  
z e r o s  o f  t h e  f i e l d  e .  By o b v i o u s  homotopy c o n s i d e r a t i o n s ,  t h e  o r d e r  o f  t h e  f a c t o r s  in  t h e  
r i g h t - h a n d  s i d e  o f  r e l a t i o n  ( 4 . 3 )  i s  i m m a t e r i a l ,  and c o n s e q u e n t l y  t h e  o p e r a t o r s  M±, Mz, . . . ,  
M m p a i r w i s e  commute. An e f f e c t i v e  c o n s t r u c t i o n  o f  t h e  monodromy a t  s i n g u l a r  p o i n t s  can be 
found  in  [ 9 ] .  

The Theorem 4 .1  g i v e n  be low a l l o w s  one t o  s p e c i f y  an o r b i t  o f  t h e  a d j o i n t  a c t i o n  i n  
t h e  L i e  a l g e b r a  G by means o f  a f i n i t e  number o f  p a r a m e t e r s  and i s  a g e n e r a l i z a t i o n  o f  
Theorem 3 . 2 . 1 0  ( i i )  o f  [ 4 ] .  A p r e l i m i n a r y  o b s e r v a t i o n  i s  t h a t  f o r  an e l e m e n t  X = X(z)  + 
a£c£ + be t h e  e x p r e s s i o n s  

<X, X>z : 2aZb -+-<X (z), X (z)>~ 

a r e  i n v a r i a n t s  o f  t h e  a d j o i n t  a c t i o n  f o r  any l = 1 . . . .  , m + 1 and any v a l u e  o f  b. Th i s  f o l -  
lows from the invariance of the forms <', ->£ and Definition 4.3. Let X = X(z) + a~czi + 

bze, Y = Y(z) + a2£c£ + b2e , where X(z) and Y(z) are elliptic loops in the Lie algebra g. 

Let G x and Gy be the monodromy groups of Eq. (4.2) for the loops X(z) and Y(z), 
respectively. 

THEOREM 4.1. if the groups G X and Gy are conjugate with respect to the group exp ~ and 
the following relations are satisfied: 

2a~b 1 + <X (z), X (z)>t -- 2a~b~ + <Y (z), Y (z)>z (4.4) 
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for all £ = i, ..., m + 1 and 

b 1 = b~=/=O, ( 4 . 5 )  

then the elements X and Y belong to the same orbit of the adjoint representation in the Lie 
algebra G. 

Proof. In the proof of Theorem 3.1.5 of [4] it is shown that whenthe relations (4.4), 
(4.5) are satisfied, the elements X and Y are conjugate if and only if the loops X(z) and 
Y(z) are connected by a gauge transformation 

Y (z) = g (z) X (z) g (x) -I - -  bE (z) g' (z) g (z)- t  

I n  f a c t ,  s u p p o s e  X(z )  and Y(z )  a r e  r e l a t e d  a s  i n  ( 4 . 6 ) .  Then f r o m  ( 4 . 4 )  and ( 4 . 5 )  i t  
follows that 

(4.6) 

t a l, -6 <X, g-iEg'>~ - - -~ -<Eg'g  -i, Eg'g-l>l. 
a 2 = (4.7) 

By Definition 4.3, Y = (Ad g)X. Conversely, Definition 4.3 and relations (4.4), (4.5) 
imply (4.7). 

Thus, we need to show that the conjugacy of G X and Gy implies (4.6). 

Suppose that there is a go e exp g such that g0Gxg0 -i = Gy. Let u X and uy be analytic 

continuations of fundamental solutions of the monodromy equations for the loops X(z) and 
Y(z), respectively. By analogy with the proof of Proposition 3.2.5 of [4], we put g(z) = 
uy -i (z) g0ux(z). Whereas ux(z) and uy(z) are not uniquely defined, g(z) is a single-valued 
function. Indeed, let us check this last assertion, for example, for a circuit along a 
small contour ~ surrounding the point z 0. Let M+(X) and M_(Y) denote the monodromy oper- 
ators corresponding to the loops X(z) and Y(z). Parametrize the contour ~ by a segment 
[0, T], setting g(x) = g(~(~)) (0 ~ • ~ T). Then 

g (x + T) = u~ (~ + T) gouz (~ + T) : u~  (x) M+(r )  -i geM+ (X) ux (x). 

Since M+(Y) = g0M+ (X) g0 -I, we have 

g (x -+- T) = u~  (x) (geM+ (X)-tg~ 1) geM+ (X) ux (x) = u~  (x) goux (~) = g (T), 

i . e . ,  g ( x )  i s  p e r i o d i c  on t h e  c o n t o u r  ~ ,  and  s i m i l a r l y  on any  o t h e r  c l o s e d  c o n t o u r  on t h e  
c u r v e  F. From h e r e  i t  f o l l o w s ,  i n  an a l m o s t  s t a n d a r d  m a n n e r ,  t h a t  g ( z )  i s  p a t h - i n d e p e n d e n t .  
I n  f a c t ,  l e t  ~1 and ~2 be  two p a t h s  f r o m  t h e  p o i n t  0 t o  t h e  p o i n t  z .  Fo r  f i x e d  z l e t  g ( ~ )  
and u ( ~ )  d e n o t e  t h e  v a l u e s  o f  g ( z )  and u ( z )  c o r r e s p o n d i n g  t o  a p a t h  $ f r o m  0 t o  z .  By what  
we p r o v e d  a b o v e ,  

g (2177 I) = g (0). (4.8) 

Since ux(0) ' = uy(0) = I, one has g(0) = go. On the other hand, g(yi$2 -i) = uy($1~2-1) -i × 

g0ux($iyf-i). Using the known multiplicative properties of the solutions of the monodromy 
equation with respect to multiplication of paths, we have g($1~2 -i) = uy($172-i)g0 ux(~iy2 -i) = 

. )-i g0ux(~i ) = uy(~2)-i × uy(y2)uy(~i -I) g0ux(~i) uX(~2) -i. In view of (4 8), we get uy(~ i 

g0uy(~2), i.e., g(~i) = g(~2)- The single-valuedness of the function g(z) is thus estab- 
lished. 

Next, from the conjugacy of the monodromy operators it follows that g(z) is double 
periodic. 

Finally, by analogy with Theorem 3.2.5 (iii) of [4], we obtain 

g X  (z) g-i _ bEg" g-t = u~go (uxX (z)) u~g~tuf + 
.~ -I ' -I -I -i -I ' -I -I 

-+- omuy uyuy gouxux go uy - -  bEuy gouxuxgo uy. 

By Eq. (4.2), we can replace uxX(z) in first term by bEu'x, and replace bEuy-luy ' in the 
second term by Y(z), and thus get gX(z)g -i - bEg'g -i = Y(z), as needed. The theorem is 
proved. 

218 



Let us examine the connection between the CCC-group constructed in Sec. 3 and orbits. 
Denote the CCC-group by W C. Let us define an action of W C on the space of pairs {inMe, 
inMe,}, where M e and M e, are semisimple elements. To this end we represent M e and M e, 

in the form M e = geh~ge -I, M e, = ge,he,ge, -I, where h~, h~, e ~. By definition, we have 

In M e = ge in hege -I, in M e, = ge' In he,ge, -I, where the elements in h~, in h~, e ~ are 
defined up to translations by elements of the lattice Q generated by a root system in the 
Cartan subalgebra ~. On the space of pairs {in hm, in h~,} there is the standard action 
of the group WC, defined in Sec. 3: if w C e Wc, ql ® q2, where w e W, ql ® q2 e Q ® Q, and 
Tql~q 2 is the translation operator by the element ql • q2, and the action is given by the rule 

w c  (in h~ Q In h~,) = w  ((in h~ -~ ql) @ (in h0/-~- q2)). (4 .9 )  

P r o p o s i t i o n  4 .1 .  1 °. Two p a i r s  of  semisimple  e lements  of  t he  form {M~, Me,} a re  conju-  
ga t e  w i th  r e s p e c t  to  the  group exp ~ i f  and on ly  i f  t he  cor responding  p a i r s  {ln h e ,  in  he, } 
belong to  t h e  same Wc-orb i t  in  t he  space ~ O ~ .  

2 ° . The s e t  of  a l l  p a i r s  {ln h e ,  in  hm,} cor responding  to  a given o r b i t  of  the  a d j o i n t  
a c t i o n  of  t he  loop group i s  a Wc-orbi t  in  the  space ~ O ~ .  

P roof .  By Theorem 4 .1 ,  a s s e r t i o n s  1 and 2 a re  e q u i v a l e n t .  Two p a i r s  of  semisimple 
e lements  {ln h e ( i ) ,  in  he,  ( i ) }  ( i  = 1, 2) a re  Wc-conjugate  i f  and on ly  i f  t h e r e  e x i s t s  a 
w e exp g such t h a t  (Ad w) ~ = ~ l~nd f o r  some cho ice  of  t he  va lue  of  t he  l o g a r i t h m .  (Ad W)× 
in he(1) = ine(2), (Ad w) in he,( - = in he,(2). Then whe(1)w -I = he(2) and whe,(1)w -I = 

he,(2), which obviously implies the conjugacy of the pairs {M~ (i), Me,(i) } with respect to 
exp ~ . 
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