
NetworkX:
Network Analysis in Python

Stepan Kuznetsov

Computer Science Department, Higher School of Economics



Outline

Social Network Graphs

NetworkX

Visualization

Computing Graph Parameters



Social Network Analysis
• The study of social structures using graph
theory is called social network analysis
(SNA).

• Thus, SNA is an area on the border of
discrete maths and sociology.

• Vertices in social network graphs represent
actors: people, social entities etc.

• Edges (also called ties or links) represent
various relations between actors.

• The standard example is the friendship
relation in social networks.



Social Network Analysis
• The study of social structures using graph
theory is called social network analysis
(SNA).

• Thus, SNA is an area on the border of
discrete maths and sociology.

• Vertices in social network graphs represent
actors: people, social entities etc.

• Edges (also called ties or links) represent
various relations between actors.

• The standard example is the friendship
relation in social networks.



Social Network Analysis
• The study of social structures using graph
theory is called social network analysis
(SNA).

• Thus, SNA is an area on the border of
discrete maths and sociology.

• Vertices in social network graphs represent
actors: people, social entities etc.

• Edges (also called ties or links) represent
various relations between actors.

• The standard example is the friendship
relation in social networks.



Social Network Analysis
• The study of social structures using graph
theory is called social network analysis
(SNA).

• Thus, SNA is an area on the border of
discrete maths and sociology.

• Vertices in social network graphs represent
actors: people, social entities etc.

• Edges (also called ties or links) represent
various relations between actors.

• The standard example is the friendship
relation in social networks.



Social Network Analysis
• The study of social structures using graph
theory is called social network analysis
(SNA).

• Thus, SNA is an area on the border of
discrete maths and sociology.

• Vertices in social network graphs represent
actors: people, social entities etc.

• Edges (also called ties or links) represent
various relations between actors.

• The standard example is the friendship
relation in social networks.



Parameters of Social Network Graphs

• Graph parameters of social network graphs
are important for sociologists studying
these networks.

• We are going to get acquainted with
specialized software for calculating them.



Parameters of Social Network Graphs

• Graph parameters of social network graphs
are important for sociologists studying
these networks.

• We are going to get acquainted with
specialized software for calculating them.



Parameters of Social Network Graphs

• Notice how some parameters of the graph
behave specifically in the social network
case (if compared to a random graph, for
example).

• As we discussed earlier, the clustering
coefficients tend to be quite high.

• This reflects the fact that friends of one
person are much more likely to be friends
also.



Parameters of Social Network Graphs

• Notice how some parameters of the graph
behave specifically in the social network
case (if compared to a random graph, for
example).

• As we discussed earlier, the clustering
coefficients tend to be quite high.

• This reflects the fact that friends of one
person are much more likely to be friends
also.



Parameters of Social Network Graphs

• Notice how some parameters of the graph
behave specifically in the social network
case (if compared to a random graph, for
example).

• As we discussed earlier, the clustering
coefficients tend to be quite high.

• This reflects the fact that friends of one
person are much more likely to be friends
also.



Parameters of Social Network Graphs
• On the other hand, being highly
clusterized, the social network happens to
be tightly connected.

• The well-known theory of six degrees of
separation (“six handshakes”) claims that
any two people in the world are no more
than six social connections from each
other.

• In graph-theoretic terms, this means that
the diameter of the social connections
graph should be ≤ 6.



Parameters of Social Network Graphs
• On the other hand, being highly
clusterized, the social network happens to
be tightly connected.

• The well-known theory of six degrees of
separation (“six handshakes”) claims that
any two people in the world are no more
than six social connections from each
other.

• In graph-theoretic terms, this means that
the diameter of the social connections
graph should be ≤ 6.



Parameters of Social Network Graphs
• On the other hand, being highly
clusterized, the social network happens to
be tightly connected.

• The well-known theory of six degrees of
separation (“six handshakes”) claims that
any two people in the world are no more
than six social connections from each
other.

• In graph-theoretic terms, this means that
the diameter of the social connections
graph should be ≤ 6.



Dataset

• In our examples, we are going to use the
SNAP dataset.

• SNAP = Stanford Network Analysis Project.
• The dataset we use includes friendship
relations between friends of given 10
Facebook users (so-called ego networks).

• This makes the dataset relatively small.
• All data is of course anonymized.



Dataset

• In our examples, we are going to use the
SNAP dataset.

• SNAP = Stanford Network Analysis Project.

• The dataset we use includes friendship
relations between friends of given 10
Facebook users (so-called ego networks).

• This makes the dataset relatively small.
• All data is of course anonymized.



Dataset

• In our examples, we are going to use the
SNAP dataset.

• SNAP = Stanford Network Analysis Project.
• The dataset we use includes friendship
relations between friends of given 10
Facebook users (so-called ego networks).

• This makes the dataset relatively small.
• All data is of course anonymized.



Dataset

• In our examples, we are going to use the
SNAP dataset.

• SNAP = Stanford Network Analysis Project.
• The dataset we use includes friendship
relations between friends of given 10
Facebook users (so-called ego networks).

• This makes the dataset relatively small.

• All data is of course anonymized.



Dataset

• In our examples, we are going to use the
SNAP dataset.

• SNAP = Stanford Network Analysis Project.
• The dataset we use includes friendship
relations between friends of given 10
Facebook users (so-called ego networks).

• This makes the dataset relatively small.
• All data is of course anonymized.



Outline

Social Network Graphs

NetworkX

Visualization

Computing Graph Parameters



NetworkX

• NetworkX is a Python library for graph
analysis and visualization.

• Free software, released under BSD-new
license.

• Capable of handling big graphs (real-world
datasets): 10M nodes / 100M edges and
more.

• Highly portable and scalable.



NetworkX

• NetworkX is a Python library for graph
analysis and visualization.

• Free software, released under BSD-new
license.

• Capable of handling big graphs (real-world
datasets): 10M nodes / 100M edges and
more.

• Highly portable and scalable.



NetworkX

• NetworkX is a Python library for graph
analysis and visualization.

• Free software, released under BSD-new
license.

• Capable of handling big graphs (real-world
datasets): 10M nodes / 100M edges and
more.

• Highly portable and scalable.



NetworkX

• NetworkX is a Python library for graph
analysis and visualization.

• Free software, released under BSD-new
license.

• Capable of handling big graphs (real-world
datasets): 10M nodes / 100M edges and
more.

• Highly portable and scalable.



Getting NetworkX
• NetworkX, along with libraries necessary
for visualization, can be installed with pip:

pip install networkx
pip install matplotlib
pip install scipy

• NetworkX is then imported:

import networkx as nx

• We’ve renamed networkx to nx for
convenience.



Getting NetworkX
• NetworkX, along with libraries necessary
for visualization, can be installed with pip:

pip install networkx
pip install matplotlib
pip install scipy

• NetworkX is then imported:

import networkx as nx

• We’ve renamed networkx to nx for
convenience.



Getting NetworkX
• NetworkX, along with libraries necessary
for visualization, can be installed with pip:

pip install networkx
pip install matplotlib
pip install scipy

• NetworkX is then imported:

import networkx as nx

• We’ve renamed networkx to nx for
convenience.



Defining a Graph: Manual
• In NetworkX, one can define a graph
manually, by adding edges one by one.

mygraph = nx.Graph()

mygraph.add_edge('A','B')
mygraph.add_edge('B','C')
mygraph.add_edge('C','A')
mygraph.add_edge('B','D')

• Vertices can be of arbitrary type (strings,
numbers, ...).



Defining a Graph: Manual
• In NetworkX, one can define a graph
manually, by adding edges one by one.

mygraph = nx.Graph()

mygraph.add_edge('A','B')
mygraph.add_edge('B','C')
mygraph.add_edge('C','A')
mygraph.add_edge('B','D')

• Vertices can be of arbitrary type (strings,
numbers, ...).



Other Types of Graphs
• NetworkX can also handle directed graphs,
multigraphs etc.

• For a directed graph, use nx.DiGraph
instead of nx.Graph .

• Graphs in NetworkX can also be weighted.
• In a weighted graph, each edge receives a
number called its weight.

• Example: time (or cost) of driving along a
road.

• Weight is added just as an optional
parameter to add_edge :

mygraph.add_edge('A','B', weight=6)



Other Types of Graphs
• NetworkX can also handle directed graphs,
multigraphs etc.

• For a directed graph, use nx.DiGraph
instead of nx.Graph .

• Graphs in NetworkX can also be weighted.
• In a weighted graph, each edge receives a
number called its weight.

• Example: time (or cost) of driving along a
road.

• Weight is added just as an optional
parameter to add_edge :

mygraph.add_edge('A','B', weight=6)



Other Types of Graphs
• NetworkX can also handle directed graphs,
multigraphs etc.

• For a directed graph, use nx.DiGraph
instead of nx.Graph .

• Graphs in NetworkX can also be weighted.

• In a weighted graph, each edge receives a
number called its weight.

• Example: time (or cost) of driving along a
road.

• Weight is added just as an optional
parameter to add_edge :

mygraph.add_edge('A','B', weight=6)



Other Types of Graphs
• NetworkX can also handle directed graphs,
multigraphs etc.

• For a directed graph, use nx.DiGraph
instead of nx.Graph .

• Graphs in NetworkX can also be weighted.
• In a weighted graph, each edge receives a
number called its weight.

• Example: time (or cost) of driving along a
road.

• Weight is added just as an optional
parameter to add_edge :

mygraph.add_edge('A','B', weight=6)



Other Types of Graphs
• NetworkX can also handle directed graphs,
multigraphs etc.

• For a directed graph, use nx.DiGraph
instead of nx.Graph .

• Graphs in NetworkX can also be weighted.
• In a weighted graph, each edge receives a
number called its weight.

• Example: time (or cost) of driving along a
road.

• Weight is added just as an optional
parameter to add_edge :

mygraph.add_edge('A','B', weight=6)



Other Types of Graphs
• NetworkX can also handle directed graphs,
multigraphs etc.

• For a directed graph, use nx.DiGraph
instead of nx.Graph .

• Graphs in NetworkX can also be weighted.
• In a weighted graph, each edge receives a
number called its weight.

• Example: time (or cost) of driving along a
road.

• Weight is added just as an optional
parameter to add_edge :

mygraph.add_edge('A','B', weight=6)



Reading a Graph from File

• NetworkX is also capable of reading graphs
from files (datasets).

• In our example, we use SNAP’s Facebook
dataset (10 ego networks combined).

• In the file facebook_combined.txt one
finds the list of edges as pairs of numbers
(vertices are numbered).

• The data gets imported by the
nx.read_edgelist method.



Reading a Graph from File

• NetworkX is also capable of reading graphs
from files (datasets).

• In our example, we use SNAP’s Facebook
dataset (10 ego networks combined).

• In the file facebook_combined.txt one
finds the list of edges as pairs of numbers
(vertices are numbered).

• The data gets imported by the
nx.read_edgelist method.



Reading a Graph from File

• NetworkX is also capable of reading graphs
from files (datasets).

• In our example, we use SNAP’s Facebook
dataset (10 ego networks combined).

• In the file facebook_combined.txt one
finds the list of edges as pairs of numbers
(vertices are numbered).

• The data gets imported by the
nx.read_edgelist method.



Reading a Graph from File

• NetworkX is also capable of reading graphs
from files (datasets).

• In our example, we use SNAP’s Facebook
dataset (10 ego networks combined).

• In the file facebook_combined.txt one
finds the list of edges as pairs of numbers
(vertices are numbered).

• The data gets imported by the
nx.read_edgelist method.



Outline

Social Network Graphs

NetworkX

Visualization

Computing Graph Parameters



Visualizing Graphs

• Graphs are abstract objects, but they have
nice geometric representations.

• In many cases, it is very helpful to see how
the graph looks like.

• Rendering an abstract graph to a picture is
called visualization.

• NetworkX is capable of visualizing graphs,
both in 2D and 3D.



Visualizing Graphs

• Graphs are abstract objects, but they have
nice geometric representations.

• In many cases, it is very helpful to see how
the graph looks like.

• Rendering an abstract graph to a picture is
called visualization.

• NetworkX is capable of visualizing graphs,
both in 2D and 3D.



Visualizing Graphs

• Graphs are abstract objects, but they have
nice geometric representations.

• In many cases, it is very helpful to see how
the graph looks like.

• Rendering an abstract graph to a picture is
called visualization.

• NetworkX is capable of visualizing graphs,
both in 2D and 3D.



Visualizing Graphs

• Graphs are abstract objects, but they have
nice geometric representations.

• In many cases, it is very helpful to see how
the graph looks like.

• Rendering an abstract graph to a picture is
called visualization.

• NetworkX is capable of visualizing graphs,
both in 2D and 3D.



Visualization: Small Example

• NetworkX visualizes graphs via Matplotlib
(a Python library for plotting).

• The method is called
nx.draw_networkx :

nx.draw_networkx(mygraph)
matplotlib.pyplot.savefig("mygraph.png")



Visualization: Small Example

• NetworkX visualizes graphs via Matplotlib
(a Python library for plotting).

• The method is called
nx.draw_networkx :

nx.draw_networkx(mygraph)
matplotlib.pyplot.savefig("mygraph.png")



Visualization: Small Example

NetworkX output



Visualization: Small Example
This is how a directed graph is visualized. Two
opposite edges between B and C are drawn as
one edge with two arrows.

NetworkX output



Visualization of Real Data
• We remove labels, because there are too
many vertices:

nx.draw_networkx(fb_gr, with_labels=False);

• Visualization makes clustering visible:

NetworkX output



Visualization of Real Data
• We remove labels, because there are too
many vertices:

nx.draw_networkx(fb_gr, with_labels=False);

• Visualization makes clustering visible:

NetworkX output



Outline

Social Network Graphs

NetworkX

Visualization

Computing Graph Parameters



Graph Parameters in NetworkX
• NetworkX provides a convenient interface
to algorithms computing graph parameters.

• Global parameters of the graph are just
functions of it.

• For example, if we wish to calculate the
average clustering coefficient (the average
value of local clustering coefficients), we
just run

av_clust = nx.average_clustering(fb_gr)



Graph Parameters in NetworkX
• NetworkX provides a convenient interface
to algorithms computing graph parameters.

• Global parameters of the graph are just
functions of it.

• For example, if we wish to calculate the
average clustering coefficient (the average
value of local clustering coefficients), we
just run

av_clust = nx.average_clustering(fb_gr)



Graph Parameters in NetworkX
• NetworkX provides a convenient interface
to algorithms computing graph parameters.

• Global parameters of the graph are just
functions of it.

• For example, if we wish to calculate the
average clustering coefficient (the average
value of local clustering coefficients), we
just run

av_clust = nx.average_clustering(fb_gr)



Graph Parameters in NetworkX
• Suppose we want to check “six
handshakes.”

• That is, we have to calculate the diameter
of our graph:

diam = nx.diameter(fb_gr)

• The calculation takes quite long... and on
our data it yields 8.

• This is quite a good result, recalling that we
have just a fusion of 10 ego nets, not the
full Facebook graph.



Graph Parameters in NetworkX
• Suppose we want to check “six
handshakes.”

• That is, we have to calculate the diameter
of our graph:

diam = nx.diameter(fb_gr)

• The calculation takes quite long... and on
our data it yields 8.

• This is quite a good result, recalling that we
have just a fusion of 10 ego nets, not the
full Facebook graph.



Graph Parameters in NetworkX
• Suppose we want to check “six
handshakes.”

• That is, we have to calculate the diameter
of our graph:

diam = nx.diameter(fb_gr)

• The calculation takes quite long... and on
our data it yields 8.

• This is quite a good result, recalling that we
have just a fusion of 10 ego nets, not the
full Facebook graph.



Graph Parameters in NetworkX
• Suppose we want to check “six
handshakes.”

• That is, we have to calculate the diameter
of our graph:

diam = nx.diameter(fb_gr)

• The calculation takes quite long... and on
our data it yields 8.

• This is quite a good result, recalling that we
have just a fusion of 10 ego nets, not the
full Facebook graph.



Graph Parameters in NetworkX
• Computing the diameter (and also some
other parameters, such as radius) is based
on computing eccentricities of vertices.

• If we need to compute several parameters
of this sort, we can precompute the
dictionary of eccentricities by the
nx.eccentricity function.

• This function returns the dictionary of
eccentricities, keyed by vertices.

• If we pass this dictionary to the diameter
computing function, it will run much faster.



Graph Parameters in NetworkX
• Computing the diameter (and also some
other parameters, such as radius) is based
on computing eccentricities of vertices.

• If we need to compute several parameters
of this sort, we can precompute the
dictionary of eccentricities by the
nx.eccentricity function.

• This function returns the dictionary of
eccentricities, keyed by vertices.

• If we pass this dictionary to the diameter
computing function, it will run much faster.



Graph Parameters in NetworkX
• Computing the diameter (and also some
other parameters, such as radius) is based
on computing eccentricities of vertices.

• If we need to compute several parameters
of this sort, we can precompute the
dictionary of eccentricities by the
nx.eccentricity function.

• This function returns the dictionary of
eccentricities, keyed by vertices.

• If we pass this dictionary to the diameter
computing function, it will run much faster.



Graph Parameters in NetworkX
• Computing the diameter (and also some
other parameters, such as radius) is based
on computing eccentricities of vertices.

• If we need to compute several parameters
of this sort, we can precompute the
dictionary of eccentricities by the
nx.eccentricity function.

• This function returns the dictionary of
eccentricities, keyed by vertices.

• If we pass this dictionary to the diameter
computing function, it will run much faster.



Distances
• By definition, the distance between two
vertices is the length of the shortest path
connecting them.

• This can be computed by
nx.shortest_path_length

• In directed graphs, the path should also be
directed—thus, sometimes 𝑑(𝑎, 𝑏) ≠ 𝑑(𝑏, 𝑎).

• Caveat! If there is no path, NetworkX
throws an exception.

• To be on the safe side, use nx.has_path
before.



Distances
• By definition, the distance between two
vertices is the length of the shortest path
connecting them.

• This can be computed by
nx.shortest_path_length

• In directed graphs, the path should also be
directed—thus, sometimes 𝑑(𝑎, 𝑏) ≠ 𝑑(𝑏, 𝑎).

• Caveat! If there is no path, NetworkX
throws an exception.

• To be on the safe side, use nx.has_path
before.



Distances
• By definition, the distance between two
vertices is the length of the shortest path
connecting them.

• This can be computed by
nx.shortest_path_length

• In directed graphs, the path should also be
directed—thus, sometimes 𝑑(𝑎, 𝑏) ≠ 𝑑(𝑏, 𝑎).

• Caveat! If there is no path, NetworkX
throws an exception.

• To be on the safe side, use nx.has_path
before.



Distances
• By definition, the distance between two
vertices is the length of the shortest path
connecting them.

• This can be computed by
nx.shortest_path_length

• In directed graphs, the path should also be
directed—thus, sometimes 𝑑(𝑎, 𝑏) ≠ 𝑑(𝑏, 𝑎).

• Caveat! If there is no path, NetworkX
throws an exception.

• To be on the safe side, use nx.has_path
before.



Distances
• By definition, the distance between two
vertices is the length of the shortest path
connecting them.

• This can be computed by
nx.shortest_path_length

• In directed graphs, the path should also be
directed—thus, sometimes 𝑑(𝑎, 𝑏) ≠ 𝑑(𝑏, 𝑎).

• Caveat! If there is no path, NetworkX
throws an exception.

• To be on the safe side, use nx.has_path
before.



Traversing

• One can also get the shortest path itself:
nx.shortest_path

• The path is given as a list of vertices.
• Traversal algorithms are implemented as
functions which return generators.

• For example, nx.dfs_preorder_nodes
returns a generator which yields the
vertices of the graph in the preorder DFS
traversing order.



Traversing

• One can also get the shortest path itself:
nx.shortest_path

• The path is given as a list of vertices.

• Traversal algorithms are implemented as
functions which return generators.

• For example, nx.dfs_preorder_nodes
returns a generator which yields the
vertices of the graph in the preorder DFS
traversing order.



Traversing

• One can also get the shortest path itself:
nx.shortest_path

• The path is given as a list of vertices.
• Traversal algorithms are implemented as
functions which return generators.

• For example, nx.dfs_preorder_nodes
returns a generator which yields the
vertices of the graph in the preorder DFS
traversing order.



Traversing

• One can also get the shortest path itself:
nx.shortest_path

• The path is given as a list of vertices.
• Traversal algorithms are implemented as
functions which return generators.

• For example, nx.dfs_preorder_nodes
returns a generator which yields the
vertices of the graph in the preorder DFS
traversing order.



Traversing: Example

G = nx.Graph()

G.add_edge('A','B')
G.add_edge('B','C')
G.add_edge('C','A')
G.add_edge('B','D')
G.add_edge('D','E')
G.add_edge('E','A')

print(list(nx.dfs_preorder_nodes(G,
source='C')))



Traversing: Example

This yields the following result:

['C', 'B', 'A', 'E', 'D']



Conclusion

• More information is available in NetworkX
documentation.

• Please consult it when accomplishing the
programming task.

• Good luck!



Conclusion

• More information is available in NetworkX
documentation.

• Please consult it when accomplishing the
programming task.

• Good luck!



Conclusion

• More information is available in NetworkX
documentation.

• Please consult it when accomplishing the
programming task.

• Good luck!


	Social Network Graphs
	NetworkX
	Visualization
	Computing Graph Parameters

