Home Assignment \# 2 (Theoretical Midterm)

Deadline: Wednesday, October 6, 2021, anywhere-on-Earth.

You may either bring your answers in written form to the lecture on Wednesday, October 6, or send them to sk@mi-ras.ru (scan or high quality photo is fine).

1. (a) Translate the negation of the following formula into CNF:

$$
(p \rightarrow(q \rightarrow r)) \rightarrow((p \rightarrow \neg r) \rightarrow(p \rightarrow \neg q))
$$

(b) Apply the Resolution Algorithm to determine whether this CNF is satisfiable. If yes, write down all its satisfying assignments.
2. Let A be a formula constructed from variables p, q, r using only the following logical operations: \vee, \wedge, and \rightarrow (but not negation). Could a CNF for A include the clause ($\neg p \vee \neg q \vee \neg r)$? If yes, provide an example; if no, explain why.
3. Could there exist a graph with the following degrees of vertices: (a) $4,3,3,1$? (b) $4,3,3,2,2$? (c) $5,4,4,2,2,1$? If yes, provide an example; if no, explain why. Loops and parallel edges are not allowed.
4. Construct a graph with 10 vertices such that every vertex has degree 3 and any two vertices are connected by a path of not more than 2 edges. Loops and parallel edges are not allowed.
5. A graph has two vertices of degree 1 and several vertices of degree 10. Prove that the vertices of degree 1 are connected by a path in this graph. (Hint: suppose the contrary.)
6. Construct a deterministic Turing machine with polynomial runtime which decides whether a word belongs to the following language: $\left\{w w^{R} \mid w \in\{0,1\}^{*}\right\}$. Here w^{R} means w written in the reverse order: for example, $(00101110)^{R}=01110100$.
7. For a given undirected graph $G=(V, E)$, construct a Boolean formula φ_{G} with the following properties: (1) φ_{G} is polynomially computable from G; (2) φ_{G} is satisfiable if and only if vertices of G can be colored in 3 colors with the following condition: For any edge $(u, v) \in E$, if u and v have different colors, then there exists $w \in V$ such that $(u, w) \in E,(v, w) \in E$, and w has the third color (different from both u and v). (Notice that the coloring is not obliged to be "correct" in the traditional sense, that is, two vertices of the same color may be connected by an edge.)

