Boolean Logic Resolution Method

Stepan Kuznetsov

Discrete Math Bridging Course, HSE University

Course Outline

- The aim of this course is to provide a background of discrete mathematics and computational complexity ideas useful for data science.

Course Outline

- The aim of this course is to provide a background of discrete mathematics and computational complexity ideas useful for data science.
- Given a very limited time for the course, we have to choose a simple central topic to use as a running example.

Course Outline

- The aim of this course is to provide a background of discrete mathematics and computational complexity ideas useful for data science.
- Given a very limited time for the course, we have to choose a simple central topic to use as a running example.
- And this topic is going to be Boolean logic.

Course Outline

- The aim of this course is to provide a background of discrete mathematics and computational complexity ideas useful for data science.
- Given a very limited time for the course, we have to choose a simple central topic to use as a running example.
- And this topic is going to be Boolean logic.
- Let us first remind the basics of it.

Boolean Functions

- Boolean functions operate on the two-element set $\{0,1\}$ (the simplest non-trivial set).

Boolean Functions

- Boolean functions operate on the two-element set $\{0,1\}$ (the simplest non-trivial set).
- Formally, an n-ary Boolean function is a function

$$
f: \underbrace{\{0,1\} \times \ldots \times\{0,1\}}_{n \text { times }} \rightarrow\{0,1\} .
$$

Boolean Functions

- Boolean functions operate on the two-element set $\{0,1\}$ (the simplest non-trivial set).
- Formally, an n-ary Boolean function is a function

$$
f: \underbrace{\{0,1\} \times \ldots \times\{0,1\}}_{n \text { times }} \rightarrow\{0,1\} .
$$

- A Boolean function is a finite object: it can be represented by a table (so-called truth table) of 2^{n} rows.

Boolean Functions

- The total number of n-ary Boolean functions is $2^{2^{n}}$.

Boolean Functions

- The total number of n-ary Boolean functions is $2^{2^{n}}$.
- For example, we have 4 unary Boolean functions and $16=2^{2^{2}}$ binary ones.

Boolean Functions

- The total number of n-ary Boolean functions is $2^{2^{n}}$.
- For example, we have 4 unary Boolean functions and $16=2^{2^{2}}$ binary ones.
- The only interesting unary Boolean function is negation, defined by the following truth table:

x	$\neg x$
0	1
1	0

Boolean Functions

- As for binary functions, among 16 possible there are several interesting ones: \wedge (conjunction, "and"), v (disjunction, "or"), \rightarrow (implication, "if ... then").

Boolean Functions

- As for binary functions, among 16 possible there are several interesting ones: \wedge (conjunction, "and"), v (disjunction, "or"), \rightarrow (implication, "if ... then").
- The truth tables for them are as follows:

x	y	$x \wedge y$	$x \vee y$	$x \rightarrow y$
0	0	0	0	1
0	1	0	1	1
1	0	0	1	0
1	1	1	1	1

Boolean Functions

- \neg, \wedge, \vee, and \rightarrow form a complete system of Boolean functions in the following sense.

Boolean Functions

$\cdot \neg, \wedge, \vee$, and \rightarrow form a complete system of Boolean functions in the following sense.
Theorem
Any Boolean function can be represented as a composition of $\neg, \wedge, \vee, \rightarrow$.

Boolean Functions

- \neg, \wedge, \vee, and \rightarrow form a complete system of Boolean functions in the following sense.

Theorem

Any Boolean function can be represented as a composition of $\neg, \wedge, \vee, \rightarrow$.

- For example, the majority function of three elements, which gives 1 iff at least two of its arguments are 1, has the following representation:

$$
\operatorname{MAJ}_{3}(x, y, z)=(x \wedge y) \vee(x \wedge z) \vee(y \wedge z)
$$

Boolean Formulae

- Such representations are formalized by Boolean formulae.

Boolean Formulae

- Such representations are formalized by Boolean formulae.
- The set Fm of Boolean formulae over a set of variables Var is defined as the minimal set obeying the following:
- Var \subseteq Fm
- $\perp, T \in \mathrm{Fm}$ (these are constants for 0 and 1)
- if $A, B \in \mathrm{Fm}$, then
$(A \wedge B),(A \vee B),(A \rightarrow B), \neg A \in \mathrm{Fm}$

Tautologies

- We shall consider Boolean formulae as logical formulae, which represent logical truth.

Tautologies

- We shall consider Boolean formulae as logical formulae, which represent logical truth.
- A classic example. If it is raining, then there are clouds in the sky. There are no clouds in the sky. Thus, it is not raining.

Tautologies

- We shall consider Boolean formulae as logical formulae, which represent logical truth.
- A classic example. If it is raining, then there are clouds in the sky. There are no clouds in the sky. Thus, it is not raining.
- $((r \rightarrow c) \wedge \neg c) \rightarrow \neg r$

Tautologies

- We shall consider Boolean formulae as logical formulae, which represent logical truth.
- A classic example. If it is raining, then there are clouds in the sky. There are no clouds in the sky. Thus, it is not raining.
- $((r \rightarrow c) \wedge \neg c) \rightarrow \neg r$
- This formula is true for any values of r, c.

Tautologies

- We shall consider Boolean formulae as logical formulae, which represent logical truth.
- A classic example. If it is raining, then there are clouds in the sky. There are no clouds in the sky. Thus, it is not raining.
- $((r \rightarrow c) \wedge \neg c) \rightarrow \neg r$
- This formula is true for any values of r, c.
- Such formulae are called tautologies.

Tautologies

- Checking a formula for being a tautology is an algorithmically decidable question.

Tautologies

- Checking a formula for being a tautology is an algorithmically decidable question.
- Indeed, the algorithm can just substitute all possible values of 0 and 1 for variables and compute the value of the formula.

Tautologies

- Checking a formula for being a tautology is an algorithmically decidable question.
- Indeed, the algorithm can just substitute all possible values of 0 and 1 for variables and compute the value of the formula.
- However, this requires exponential time (checking 2^{n} possible assignments).

Tautologies

- Checking a formula for being a tautology is an algorithmically decidable question.
- Indeed, the algorithm can just substitute all possible values of 0 and 1 for variables and compute the value of the formula.
- However, this requires exponential time (checking 2^{n} possible assignments).
- Is there a faster algorithm?..

Satisfiability

- It will be more convenient for us to consider a dual notion of satisfiable formula.

Satisfiability

- It will be more convenient for us to consider a dual notion of satisfiable formula.
- A Boolean formula is satisfiable, if it is true for at least one assignment.

Satisfiability

- It will be more convenient for us to consider a dual notion of satisfiable formula.
- A Boolean formula is satisfiable, if it is true for at least one assignment.
- Such an assignment is called a satisfying assignment.

Satisfiability

- Satisfiability is indeed dual to being a tautology:
A is a tautology $\Longleftrightarrow \neg A$ is not satisfiable.

Satisfiability

- Satisfiability is indeed dual to being a tautology:
A is a tautology $\Longleftrightarrow \neg A$ is not satisfiable.
- And actually satisfiability is a very general model example of situations where we seek for existence of an object (here: satisfying assignment) with given properties (here: the given formula A).

DNF and CNF

- A literal is either a variable (x) or its negation ($\neg x$, written as \bar{x}).

DNF and CNF

- A literal is either a variable (x) or its negation ($\neg x$, written as \bar{x}).
- An elementary conjunction is a conjunction of literals, e.g., $x \wedge \bar{y} \wedge z$.

DNF and CNF

- A literal is either a variable (x) or its negation ($\neg x$, written as \bar{x}).
- An elementary conjunction is a conjunction of literals, e.g., $x \wedge \bar{y} \wedge z$.
- A DNF (disjunctive normal form) is a disjunction of elementary conjunctions.

DNF and CNF

- A literal is either a variable (x) or its negation ($\neg x$, written as \bar{x}).
- An elementary conjunction is a conjunction of literals, e.g., $x \wedge \bar{y} \wedge z$.
- A DNF (disjunctive normal form) is a disjunction of elementary conjunctions.
- Dually, a CNF (conjunctive n.f.) is a conjunction of elementary disjunctions, e.g., $(x \vee y) \wedge(y \vee \bar{z}) \wedge(x \vee \bar{z})$.

DNF and CNF

- A literal is either a variable (x) or its negation ($\neg x$, written as \bar{x}).
- An elementary conjunction is a conjunction of literals, e.g., $x \wedge \bar{y} \wedge z$.
- A DNF (disjunctive normal form) is a disjunction of elementary conjunctions.
- Dually, a CNF (conjunctive n.f.) is a conjunction of elementary disjunctions, e.g., $(x \vee y) \wedge(y \vee \bar{z}) \wedge(x \vee \bar{z})$.
- The elementary dis- / conjunctions are called clauses.

Trivial Cases

- The degenerate DNF with zero clauses is constant "false," \perp.

Trivial Cases

- The degenerate DNF with zero clauses is constant "false," \perp.
- Dually, the empty CNF is T, "true."

Trivial Cases

- The degenerate DNF with zero clauses is constant "false," \perp.
- Dually, the empty CNF is T, "true."
- Indeed, DNF clauses add possibilities, while CNF ones impose constraints.

Full DNF

- Any Boolean function can be represented by a full DNF, in which each clause contains all variables.

Full DNF

- Any Boolean function can be represented by a full DNF, in which each clause contains all variables.
- The full DNF can be obtained from the truth table:

Full DNF

- Any Boolean function can be represented by a full DNF, in which each clause contains all variables.
- The full DNF can be obtained from the truth table:

x	y	z	A
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

Full DNF

- Any Boolean function can be represented by a full DNF, in which each clause contains all variables.
- The full DNF can be obtained from the truth table:

x	y	z	A	
0	0	0	1	$(\bar{x} \wedge \bar{y} \wedge \bar{z})$
0	0	1	0	
0	1	0	0	
0	1	1	0	
1	0	0	1	$(x \wedge \bar{y} \wedge \bar{z})$
1	0	1	1	$(x \wedge \bar{y} \wedge z)$
1	1	0	0	
1	1	1	1	$(x \wedge y \wedge z)$

Full DNF

- Any Boolean function can be represented by a full DNF, in which each clause contains all variables.
- The full DNF can be obtained from the truth table:

x	y	z	A
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

$\left.\begin{array}{l}(\bar{x} \wedge \bar{y} \wedge \bar{z}) \\ \\ (x \wedge \bar{y} \wedge \bar{z}) \\ (x \wedge \bar{y} \wedge z) \\ (x \wedge y \wedge z)\end{array}\right\} \vee$

Full DNF

- The full DNF presented on the previous slide, $(\bar{x} \wedge \bar{y} \wedge \bar{z}) \vee(x \wedge \bar{y} \wedge \bar{z}) \vee(x \wedge \bar{y} \wedge z) \vee(x \wedge y \wedge z)$, is not the optimal (shortest) one for the given function.

Full DNF

- The full DNF presented on the previous slide,
$(\bar{x} \wedge \bar{y} \wedge \bar{z}) \vee(x \wedge \bar{y} \wedge \bar{z}) \vee(x \wedge \bar{y} \wedge z) \vee(x \wedge y \wedge z)$,
is not the optimal (shortest) one for the given function.
- The following DNFs are equivalent to it and are shorter:

$$
\begin{aligned}
& (\bar{x} \wedge \bar{y} \wedge \bar{z}) \vee(x \wedge \bar{y}) \vee(x \wedge y \wedge z) \\
& (\bar{x} \wedge \bar{y} \wedge \bar{z}) \vee(x \wedge \bar{y} \wedge \bar{z}) \vee(x \wedge z)
\end{aligned}
$$

Completeness of \neg, \wedge, \vee

- However, the notion of full DNF is sufficient to prove the theorem that \neg, \wedge, \vee form a complete system of Boolean functions.

Completeness of \neg, \wedge, \vee

- However, the notion of full DNF is sufficient to prove the theorem that \neg, \wedge, \vee form a complete system of Boolean functions.
- Moreover, by De Morgan laws,
$\neg(A \wedge B) \equiv(\neg A) \vee(\neg B)$, thus
$A \wedge B \equiv \neg((\neg A) \vee(\neg B))$.

Completeness of \neg, \wedge, \vee

- However, the notion of full DNF is sufficient to prove the theorem that \neg, \wedge, \vee form a complete system of Boolean functions.
- Moreover, by De Morgan laws,
$\neg(A \wedge B) \equiv(\neg A) \vee(\neg B)$, thus
$A \wedge B \equiv \neg((\neg A) \vee(\neg B))$.
- This means that already \neg, \vee and, dually, \neg, \wedge are complete systems.

Completeness of \neg, \wedge, \vee

- However, the notion of full DNF is sufficient to prove the theorem that \neg, \wedge, \vee form a complete system of Boolean functions.
- Moreover, by De Morgan laws,
$\neg(A \wedge B) \equiv(\neg A) \vee(\neg B)$, thus $A \wedge B \equiv \neg((\neg A) \vee(\neg B))$.
- This means that already \neg, \vee and, dually, \neg, \wedge are complete systems.
- In particular,

$$
A \rightarrow B \equiv \neg A \vee B \equiv \neg(A \wedge \neg B) .
$$

Full CNF

- A DNF can be translated into a CNF by distributivity.

Full CNF

- A DNF can be translated into a CNF by distributivity.
- One can also construct a full CNF from the truth table by excluding 0 -lines:

Full CNF

- A DNF can be translated into a CNF by distributivity.
- One can also construct a full CNF from the truth table by excluding 0 -lines:

x	y	z	A
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

Full CNF

- A DNF can be translated into a CNF by distributivity.
- One can also construct a full CNF from the truth table by excluding 0 -lines:

x	y	z	A	
0	0	0	1	
0	0	1	0	$(x \vee y \vee \bar{z})$
0	1	0	0	$(x \vee \bar{y} \vee z)$
0	1	1	0	$(x \vee \bar{y} \vee \bar{z})$
1	0	0	1	
1	0	1	1	
1	1	0	0	$(\bar{x} \vee \bar{y} \vee z)$
1	1	1	1	

Full CNF

- A DNF can be translated into a CNF by distributivity.
- One can also construct a full CNF from the truth table by excluding 0 -lines:
$\left.\begin{array}{ccc|cc}x & y & z & A & \\ \hline 0 & 0 & 0 & 1 & \\ 0 & 0 & 1 & 0 & (x \vee y \vee \bar{z}) \\ 0 & 1 & 0 & 0 & (x \vee \bar{y} \vee z) \\ 0 & 1 & 1 & 0 & (x \vee \bar{y} \vee \bar{z}) \\ 1 & 0 & 0 & 1 & \\ 1 & 0 & 1 & 1 & \\ 1 & 1 & 0 & 0 & (\bar{x} \vee \bar{y} \vee z) \\ 1 & 1 & 1 & 1 & \end{array}\right\} \wedge$

Satisfiability for DNF and CNF

- If a formula is given in DNF, checking its satisfiability is trivial.

Satisfiability for DNF and CNF

- If a formula is given in DNF, checking its satisfiability is trivial.
- The algorithm just checks elementary conjunctions until it finds a consistent one, i.e., one not including both x and \bar{x}.

Satisfiability for DNF and CNF

- If a formula is given in DNF, checking its satisfiability is trivial.
- The algorithm just checks elementary conjunctions until it finds a consistent one, i.e., one not including both x and \bar{x}.
- This clause is satisfiable, and so is the whole DNF.

Satisfiability for DNF and CNF

- If a formula is given in DNF, checking its satisfiability is trivial.
- The algorithm just checks elementary conjunctions until it finds a consistent one, i.e., one not including both x and \bar{x}.
- This clause is satisfiable, and so is the whole DNF.
- For CNFs, satisfiability is a non-trivial question.

Satisfiability for DNF and CNF

- If a formula is given in DNF, checking its satisfiability is trivial.
- The algorithm just checks elementary conjunctions until it finds a consistent one, i.e., one not including both x and \bar{x}.
- This clause is satisfiable, and so is the whole DNF.
- For CNFs, satisfiability is a non-trivial question.
- Translating from CNF to DNF does not help: this could increase the size exponentially.

Resolution Method

- The fact that a formula is a tautology can be established (in contrast with checking all assignments) by proving it in the classical propositional calculus.

Resolution Method

- The fact that a formula is a tautology can be established (in contrast with checking all assignments) by proving it in the classical propositional calculus.
- In this course, we consider a dual situation: disproving satisfiability via resolution method.

Resolution Method

- The fact that a formula is a tautology can be established (in contrast with checking all assignments) by proving it in the classical propositional calculus.
- In this course, we consider a dual situation: disproving satisfiability via resolution method.
- Recall that, by duality, proving that A is a tautology is equivalent to disproving satisfiability of $\neg A$.

Resolution Method

- Resolution method is applied to formulae in CNF, presented as a list of clauses.

Resolution Method

- Resolution method is applied to formulae in CNF, presented as a list of clauses.
- The one and only rule is resolution, which generates new clauses from already existing ones:

$$
\frac{A \vee p \quad B \vee \bar{p}}{A \vee B}
$$

Resolution Method

- Resolution method is applied to formulae in CNF, presented as a list of clauses.
- The one and only rule is resolution, which generates new clauses from already existing ones:

$$
\frac{A \vee p \quad B \vee \bar{p}}{A \vee B}
$$

- Contradictive clause: the empty one (obtained by resolution from p and \bar{p}).

Resolution Method

Theorem (Soundness and Completeness)
A CNF is not satisfiable if and only if one can obtain the empty clause by applying resolutions, starting from the given CNF.

Resolution Method

Theorem (Soundness and Completeness)
A CNF is not satisfiable if and only if one can obtain the empty clause by applying resolutions, starting from the given CNF.

- The "if" part (soundness) is easy: if an assignment satisfies $A \vee p$ and $B \vee \bar{p}$, it also satisfies $A \vee B$. The empty clause is not satisfiable.

Resolution Method

Theorem (Soundness and Completeness)
A CNF is not satisfiable if and only if one can obtain the empty clause by applying resolutions, starting from the given CNF.

- The "if" part (soundness) is easy: if an assignment satisfies $A \vee p$ and $B \vee \bar{p}$, it also satisfies $A \vee B$. The empty clause is not satisfiable.
- The "only if" part (completeness) will be proved next time.

Saturation

- The soundness and completeness theorem validates the following algorithm for checking satisfiability of CNFs.

Saturation

- The soundness and completeness theorem validates the following algorithm for checking satisfiability of CNFs.
- Given a CNF (as a set of clause), let us saturate it by exhaustively applying resolutions until they stop generating new clauses.

Saturation

- The soundness and completeness theorem validates the following algorithm for checking satisfiability of CNFs.
- Given a CNF (as a set of clause), let us saturate it by exhaustively applying resolutions until they stop generating new clauses.
- The CNF is satisfiable if and only if its saturation does not include the empty clause.

Translating into CNF

- The resolution method works only with CNFs.

Translating into CNF

- The resolution method works only with CNFs.
- When checking a formula A for being a tautology, it is convenient for A to be in DNF, since then $\neg A$ is easily transformed into CNF by De Morgan.

Translating into CNF

- The resolution method works only with CNFs.
- When checking a formula A for being a tautology, it is convenient for A to be in DNF, since then $\neg A$ is easily transformed into CNF by De Morgan.
- For implications, keep in mind the following equivalences:

$$
A \rightarrow B \equiv \neg A \vee B \quad \neg(A \rightarrow B) \equiv A \wedge \neg B
$$

Example

- Let us check whether the following formula is a tautology:

$$
A=(p \rightarrow(q \rightarrow r)) \rightarrow((p \rightarrow q) \rightarrow(p \rightarrow r)
$$

Example

- Let us check whether the following formula is a tautology:

$$
A=(p \rightarrow(q \rightarrow r)) \rightarrow((p \rightarrow q) \rightarrow(p \rightarrow r)
$$

- Let us negate A and check whether $\neg A$ is satisfiable

$$
\neg A=(\bar{p} \vee \bar{q} \vee r) \wedge(\bar{p} \vee q) \wedge p \wedge \bar{r}
$$

Example

$$
\begin{aligned}
& \bar{p} \vee \bar{q} \vee r \\
& \bar{p} \vee q \\
& p \\
& \bar{r}
\end{aligned}
$$

Example

$$
\begin{aligned}
& \bar{p} \vee \bar{q} \vee r \quad \bar{q} \vee r \\
& \bar{p} \vee q \\
& p \\
& \bar{r}
\end{aligned}
$$

Example

Example

Example

$\bar{p} \vee \bar{q} \vee r$	$\bar{q} \vee r$
$\bar{p} \vee q$	$\bar{p} \vee r$
p	r
\bar{r}	\perp

Example

$\bar{p} \vee \bar{q} \vee r$	$\bar{q} \vee r$
$\bar{p} \vee q$	$\bar{p} \vee r$
p	r
\bar{r}	\perp

\Rightarrow NOT SATISFIABLE

$2-C N F$

- Unfortunately, in the general case saturation can be exponential.

2-CNF

- Unfortunately, in the general case saturation can be exponential.
- However, if each clause has no more than 2 literals (this is called a $2-\mathrm{CNF}$), resolution method works really fast.

2-CNF

- Unfortunately, in the general case saturation can be exponential.
- However, if each clause has no more than 2 literals (this is called a $2-\mathrm{CNF}$), resolution method works really fast.
- Indeed, applying resolution to 2-bounded clauses also yields a 2-bounded clause.

2-CNF

- Unfortunately, in the general case saturation can be exponential.
- However, if each clause has no more than 2 literals (this is called a $2-\mathrm{CNF}$), resolution method works really fast.
- Indeed, applying resolution to 2-bounded clauses also yields a 2-bounded clause.
- And the total number of 2-bounded clauses is $\leq 4 n^{2}+2 n+1$.

2-CNF

- Unfortunately, in the general case saturation can be exponential.
- However, if each clause has no more than 2 literals (this is called a 2-CNF), resolution method works really fast.
- Indeed, applying resolution to 2-bounded clauses also yields a 2-bounded clause.
- And the total number of 2-bounded clauses is $\leq 4 n^{2}+2 n+1$.
- Thus, checking satisfiability for 2-CNF can be performed in polynomial time.

Polynomiality

- Traditionally, an algorithmic problem is considered "practically solvable," if there exists a polynomially bounded algorithm for it (that is, the number of steps, even in the worst case, is $\leq p(|x|)$, where p is a fixed polynomial and $|x|$ is the input length).

Polynomiality

- Traditionally, an algorithmic problem is considered "practically solvable," if there exists a polynomially bounded algorithm for it (that is, the number of steps, even in the worst case, is $\leq p(|x|)$, where p is a fixed polynomial and $|x|$ is the input length).
- This is, of course, a gross approximation: let, say, $p(n)=n^{100}$.

Polynomiality

- In real practice people usually wish better complexity bounds, e.g., $n \log n$.

Polynomiality

- In real practice people usually wish better complexity bounds, e.g., $n \log n$.
- However, polynomiality is robust: it is independent from details of implementation and even from the computational model.

Polynomiality

- In real practice people usually wish better complexity bounds, e.g., $n \log n$.
- However, polynomiality is robust: it is independent from details of implementation and even from the computational model.
- A problem is polynomially solvable on a "real" computer iff it is polynomially solvable on a 1-tape Turing machine.

Polynomiality

- In real practice people usually wish better complexity bounds, e.g., $n \log n$.
- However, polynomiality is robust: it is independent from details of implementation and even from the computational model.
- A problem is polynomially solvable on a "real" computer iff it is polynomially solvable on a 1-tape Turing machine.
- ... but with a different degree of p.

Polynomiality

- As we've seen, satisfiability for DNF and for 2-CNF is polynomially decidable.

Polynomiality

- As we've seen, satisfiability for DNF and for 2-CNF is polynomially decidable.
- In short, these problems belong to class P.

Polynomiality

- As we've seen, satisfiability for DNF and for 2-CNF is polynomially decidable.
- In short, these problems belong to class P.
- For satisfiability of CNFs, the situation is different.

Polynomiality

- As we've seen, satisfiability for DNF and for 2-CNF is polynomially decidable.
- In short, these problems belong to class P.
- For satisfiability of CNFs, the situation is different.
- By now, it is unknown whether it is in P.

Polynomiality

- As we've seen, satisfiability for DNF and for 2-CNF is polynomially decidable.
- In short, these problems belong to class P.
- For satisfiability of CNFs, the situation is different.
- By now, it is unknown whether it is in P.
- However, this is highly unlikely, because then a large class of similar problems, called NP, would be also in P.

Polynomiality

- As we've seen, satisfiability for DNF and for 2-CNF is polynomially decidable.
- In short, these problems belong to class P.
- For satisfiability of CNFs, the situation is different.
- By now, it is unknown whether it is in P.
- However, this is highly unlikely, because then a large class of similar problems, called NP, would be also in P.
- These problems include, e.g., subgraph isomorphism, knapsack problem, subset sum problem, ...

What Next?

- In the course, we shall develop the theory of NP problems and NP-completeness, and related topics.

What Next?

- In the course, we shall develop the theory of NP problems and NP-completeness, and related topics.
- The running examples will be connected to Boolean logic and graph theory.

What Next?

- In the course, we shall develop the theory of NP problems and NP-completeness, and related topics.
- The running examples will be connected to Boolean logic and graph theory.
- During the course, we'll highlight possible connections and applications in data analysis.

