HW \# 1: Resolution Method and Parsing

Stepan Kuznetsov
Discrete Math Bridging Course, HSE University

Satisfiability

- We continue discussing satisfiability of Boolean formula.

Satisfiability

- We continue discussing satisfiability of Boolean formula.
- A satisfying assignment is an assignment of 0 's and 1 's to variables, which makes the formula true (value $=1$).

Satisfiability

- We continue discussing satisfiability of Boolean formula.
- A satisfying assignment is an assignment of 0's and 1's to variables, which makes the formula true (value $=1$).
- Satisfiability is a model example of a very general situation of finding (more precisely: checking for existence) an object with given properties.

Resolution Method

- Recall that resolution method is a method of determining whether a Boolean formula given in CNF is satisfiable.

Resolution Method

- Recall that resolution method is a method of determining whether a Boolean formula given in CNF is satisfiable.
- A CNF is a conjunction of clauses, where each clause is a disjunction of literals (e.g., $\bar{x} \vee y \vee \bar{z}$).

Resolution Method

- Recall that resolution method is a method of determining whether a Boolean formula given in CNF is satisfiable.
- A CNF is a conjunction of clauses, where each clause is a disjunction of literals (e.g., $\bar{x} \vee y \vee \bar{z})$.
- The algorithm saturates the CNF by adding all clauses which can be generated by the resolution rule:

$$
\frac{A \vee p \quad B \vee \bar{p}}{A \vee B}
$$

Resolution Method

- If the empty clause (\perp) got obtained, the CNF is not satisfiable (because the resolution rule keeps validity).

Resolution Method

- If the empty clause (\perp) got obtained, the CNF is not satisfiable (because the resolution rule keeps validity).
- Moreover, by completeness theorem this is a criterion: if the empty clause is not obtained, the CNF is satisfiable.

Resolution Method

- However, the non-derivability of the empty clause does not give us the satisfying assignment itself.

Resolution Method

- However, the non-derivability of the empty clause does not give us the satisfying assignment itself.
- In other words, the method solves the decision problems ("yes"/ "no"), but not the search problem.

Resolution Method

- However, the non-derivability of the empty clause does not give us the satisfying assignment itself.
- In other words, the method solves the decision problems ("yes"/"no"), but not the search problem.
- If we are lucky enough, and the CNF has only one satisfying assignment, then after saturation we get isolated literals (like x or \bar{y}, for example), which dictate the desired satisfying assignment (e.g., $x=1$ or $y=0$).

Resolution Method

- In other cases, we can use the following consideration.

Resolution Method

- In other cases, we can use the following consideration.

Proposition

If a saturated CNF \mathcal{S} includes neither \perp nor \bar{x} as an isolated literal, then $\mathcal{S} \wedge x$ is also satisfiable. Same for swapping x and \bar{x}.

Resolution Method

- In other cases, we can use the following consideration.

Proposition

If a saturated CNF \mathcal{S} includes neither \perp nor \bar{x} as an isolated literal, then $\mathcal{S} \wedge x$ is also satisfiable. Same for swapping x and \bar{x}.

- In particular, if \mathcal{S} is satisfiable and includes neither x nor \bar{x}, we can make an arbitrary choice for the value of x.

Resolution Method

- However, after making this arbitrary choice, we have to saturate $\mathcal{S} \wedge x$ (or $\mathcal{S} \wedge \bar{x}$) again before considering another variable.

Resolution Method

- However, after making this arbitrary choice, we have to saturate $\mathcal{S} \wedge x$ (or $\mathcal{S} \wedge \bar{x}$) again before considering another variable.
- For example, the CNF $(x \vee \bar{y}) \wedge(x \vee z)$ is saturated, but choosing $x=0$ (adding \bar{x}) allows new resolutions giving \bar{y} and z, and thus dictating values for all other variables.

Resolution Method

Proposition

If a saturated CNF \mathcal{S} includes neither \perp nor \bar{x} as an isolated literal, then $\mathcal{S} \wedge x$ is also satisfiable. Same for swapping x and \bar{x}.

Resolution Method

Proposition

If a saturated CNF \mathcal{S} includes neither \perp nor \bar{x} as an isolated literal, then $\mathcal{S} \wedge x$ is also satisfiable. Same for swapping x and \bar{x}.

- The proof of the proposition is easy.

Resolution Method

Proposition

If a saturated CNF \mathcal{S} includes neither \perp nor \bar{x} as an isolated literal, then $\mathcal{S} \wedge x$ is also satisfiable. Same for swapping x and \bar{x}.

- The proof of the proposition is easy.
- Indeed, new resolutions applied when we saturate $\mathcal{S} \wedge x$, should involve x.

Resolution Method

Proposition

 If a saturated CNF \mathcal{S} includes neither \perp nor \bar{x} as an isolated literal, then $\mathcal{S} \wedge x$ is also satisfiable. Same for swapping x and \bar{x}.- The proof of the proposition is easy.
- Indeed, new resolutions applied when we saturate $\mathcal{S} \wedge x$, should involve x.
- Therefore, if such a resolution generates \perp, there should have been \bar{x} in the original \mathcal{S}.

Example

$$
(\bar{p} \vee r \vee s),(\bar{r} \vee q),(\bar{s} \vee \bar{p} \vee z),(\bar{z} \vee t), p
$$

Example

$$
\begin{gathered}
(\bar{p} \vee r \vee s),(\bar{r} \vee q),(\bar{s} \vee \bar{p} \vee z),(\bar{z} \vee t), p \\
(r \vee s),(\bar{s} \vee z),(\bar{p} \vee s \vee q),(\bar{p} \vee r \vee z),(\bar{s} \vee \bar{p} \vee t),
\end{gathered}
$$

Example

$$
\begin{gathered}
(\bar{p} \vee r \vee s),(\bar{r} \vee q),(\bar{s} \vee \bar{p} \vee z),(\bar{z} \vee t), p \\
(r \vee s),(\bar{s} \vee z),(\bar{p} \vee s \vee q),(\bar{p} \vee r \vee z),(\bar{s} \vee \bar{p} \vee t), \\
(r \vee z),(\bar{p} \vee q \vee z),(s \vee q),(\bar{s} \vee t),(r \vee \bar{p} \vee t),
\end{gathered}
$$

Example

$$
\begin{aligned}
& \quad(\bar{p} \vee r \vee s),(\bar{r} \vee q),(\bar{s} \vee \bar{p} \vee z),(\bar{z} \vee t), p \\
& (r \vee s),(\bar{s} \vee z),(\bar{p} \vee s \vee q),(\bar{p} \vee r \vee z),(\bar{s} \vee \bar{p} \vee t), \\
& (r \vee z),(\bar{p} \vee q \vee z),(s \vee q),(\bar{s} \vee t),(r \vee \bar{p} \vee t), \\
& (q \vee t),(z \vee q),(r \vee t)
\end{aligned}
$$

Example

$$
\begin{aligned}
& \quad(\bar{p} \vee r \vee s),(\bar{r} \vee q),(\bar{s} \vee \bar{p} \vee z),(\bar{z} \vee t), p \\
& (r \vee s),(\bar{s} \vee z),(\bar{p} \vee s \vee q),(\bar{p} \vee r \vee z),(\bar{s} \vee \bar{p} \vee t), \\
& (r \vee z),(\bar{p} \vee q \vee z),(s \vee q),(\bar{s} \vee t),(r \vee \bar{p} \vee t), \\
& (q \vee t),(z \vee q),(r \vee t)
\end{aligned}
$$

Example

$$
\begin{aligned}
& \quad(\bar{p} \vee r \vee s),(\bar{r} \vee q),(\bar{s} \vee \bar{p} \vee z),(\bar{z} \vee t), p \\
& (r \vee s),(\bar{s} \vee z),(\bar{p} \vee s \vee q),(\bar{p} \vee r \vee z),(\bar{s} \vee \bar{p} \vee t), \\
& (r \vee z),(\bar{p} \vee q \vee z),(s \vee q),(\bar{s} \vee t),(r \vee \bar{p} \vee t), \\
& (q \vee t),(z \vee q),(r \vee t)
\end{aligned}
$$

Example

$$
(\bar{p} \vee r \vee s),(\bar{r} \vee q),(\bar{s} \vee \bar{p} \vee z),(\bar{z} \vee t), p
$$

$$
\begin{aligned}
& (r \vee s),(\bar{s} \vee z),(\bar{p} \vee s \vee q),(\bar{p} \vee r \vee z),(\bar{s} \vee \bar{p} \vee t), \\
& (r \vee z),(\bar{p} \vee q \vee z),(s \vee q),(\bar{s} \vee t),(r \vee \bar{p} \vee t), \\
& (q \vee t),(z \vee q),(r \vee t)
\end{aligned}
$$

$$
s, z, t,(\bar{p} \vee z),(\bar{p} \vee t)
$$

Resolution for 2-CNF

- If clauses include at least 3 literals, resolution can lead to growth:

$$
\frac{x \vee \bar{y} \vee p \quad z \vee w \vee \bar{p}}{x \vee \bar{y} \vee z \vee w}
$$

Resolution for 2-CNF

- If clauses include at least 3 literals, resolution can lead to growth:

$$
\frac{x \vee \bar{y} \vee p \quad z \vee w \vee \bar{p}}{x \vee \bar{y} \vee z \vee w}
$$

- This makes saturation a potentially exponential procedure.

Resolution for 2-CNF

- If clauses include at least 3 literals, resolution can lead to growth:

$$
\frac{x \vee \bar{y} \vee p \quad z \vee w \vee \bar{p}}{x \vee \bar{y} \vee z \vee w}
$$

- This makes saturation a potentially exponential procedure.
- However, for 2-CNF (each clause includes no more than 2 literals) the clauses do not grow:

$$
\frac{x \vee p \quad \bar{z} \vee \bar{p}}{x \vee \bar{z}}
$$

Resolution for 2-CNF

- Thus, the total number of possible clauses does not exceed $4 n^{2}+2 n+1$, where n is the number of variables.

Resolution for 2-CNF

- Thus, the total number of possible clauses does not exceed $4 n^{2}+2 n+1$, where n is the number of variables.
- This makes the saturation process polynomial.

Resolution for 2-CNF

- Thus, the total number of possible clauses does not exceed $4 n^{2}+2 n+1$, where n is the number of variables.
- This makes the saturation process polynomial.
- This can be organized as follows: take each clause from the list, starting from the second one, and try to resolve it against eariler ones. Does it give a new clause?

Resolution for 2-CNF

- Thus, the total number of possible clauses does not exceed $4 n^{2}+2 n+1$, where n is the number of variables.
- This makes the saturation process polynomial.
- This can be organized as follows: take each clause from the list, starting from the second one, and try to resolve it against eariler ones. Does it give a new clause?
- New clauses are added to the bottom of the list.

Home Assignment \# 1

- Satisfiability for 2-CNF will be your task for HW \# 1.
- The easy version is to check satisfiability (using resolution method).
- The full task is to check satisfiability and, if the answer is "yes," to return one of the satisfying assignments.

Home Assignment \# 1

- It is important to keep in mind that the input is given in human-readable form, as a string representing the formula.

Home Assignment \# 1

- It is important to keep in mind that the input is given in human-readable form, as a string representing the formula.
- The program (in Python) should implement two functions:

1. is_satisfiable, which takes a CNF and answers True or False, depending on whether it is satisfiable.
2. sat_assignment, which takes a CNF and returns a satisfying assignment as an associative array:
\{ 'x': True, 'y': False, 'z': True \}

Home Assignment \# 1

- Conjunction, disjunction, negation, and implication, are, resp., /
, \/, ~, ->.

Home Assignment \# 1

- Conjunction, disjunction, negation, and implication, are, resp., /
, \/, ~, ->.
- Literals: x or $\sim \mathrm{x}$, where x is an arbitrary letter.

Home Assignment \# 1

- Conjunction, disjunction, negation, and implication, are, resp., /
, \/, ~, ->.
- Literals: x or $\sim x$, where x is an arbitrary letter.
- Clauses: $\left(L_{1} \backslash / L_{2}\right)$ or $\left(L_{1}->L_{2}\right)$, where L_{1} and L_{2} are literals.

Home Assignment \# 1

- Conjunction, disjunction, negation, and implication, are, resp., /
, \/, ~, ->.
- Literals: x or $\sim x$, where x is an arbitrary letter.
- Clauses: $\left(L_{1} \backslash / L_{2}\right)$ or $\left(L_{1}->L_{2}\right)$, where L_{1} and L_{2} are literals.
- The CNF is a conjunction (/
) of clauses.

HW \# 1: Practice in Boolean Logic

- First, one needs to translate the input into a machine-digestable form (this is called parsing of the input).

HW \# 1: Practice in Boolean Logic

- First, one needs to translate the input into a machine-digestable form (this is called parsing of the input).
- Grammar for CNFs:

CNF ::= Clause | CNF / Clause

$$
\begin{aligned}
& \text { Clause ::= (Lit } \backslash / \text { Lit) | (Lit -> Lit) } \\
& \text { Lit ::= Var | ~Var }
\end{aligned}
$$

HW \# 1: Practice in Boolean Logic

- First, one needs to translate the input into a machine-digestable form (this is called parsing of the input).
- Grammar for CNFs:

CNF : := Clause | CNF / Clause Clause ::= (Lit \/ Lit) | (Lit -> Lit) Lit ::= Var | ~Var

- We shall use specialized software, PLY (Python Lex \& Yacc), in order to automatize the parsing process.

The Parsing Workflow

Lexical Analysis

- Input (stream of symbols):
int main(void)
\{
printf("Hello, World!\n");
\}

Lexical Analysis

- Input (stream of symbols):
int main(void)
\{
printf("Hello, World!\n"); \}
- Output (stream of tokens):

Lexical Analysis

- Input (stream of symbols):
int main(void)
\{
printf("Hello, World!\n");
\}
- Output (stream of tokens):
kw_INT

Lexical Analysis

- Input (stream of symbols):
int main(void)
\{
printf("Hello, World!\n");
\}
- Output (stream of tokens):

KW_INT IDENT('main')

Lexical Analysis

- Input (stream of symbols):
int main(void)
\{
printf("Hello, World!\n");
\}
- Output (stream of tokens): KW_INT IDENT('main') '('

Lexical Analysis

- Input (stream of symbols):
int main(void)
\{
printf("Hello, World!\n");
\}
- Output (stream of tokens):
KW_INT IDENT('main') '(' KW_VOID

Lexical Analysis

- Input (stream of symbols):
int main(void)
\{
printf("Hello, World!\n");
\}
- Output (stream of tokens):
KW_INT IDENT('main') '(' KW_VOID

Lexical Analysis

- Input (stream of symbols):
int main(void)
\{
printf("Hello, World!\n");
\}
- Output (stream of tokens):

KW_INT IDENT('main') '(' KW_VOID

- Tokens are much more convenient to work with (in the grammar).

Running Example: Simplifying Polynomials

- We consider the following task: translating polynomials into normal form.

Running Example: Simplifying Polynomials

- We consider the following task: translating polynomials into normal form.

$$
(2 x+2)\left(3 x^{2}-1\right)+2 x=6 x^{3}+6 x-2
$$

Running Example: Simplifying Polynomials

- We consider the following task: translating polynomials into normal form.

$$
(2 x+2)\left(3 x^{2}-1\right)+2 x=6 x^{3}+6 x-2
$$

- Grammar:

$$
\begin{array}{ll}
\text { Expr } & ::=\text { Tm | -Tm | Expr }+ \text { Tm | Expr }- \text { Tm } \\
\text { Tm } & ::=\text { Mon | (Expr) | Tm (Expr) } \\
\text { Mon } & ::=\text { Int_opt 'x' Pow_opt | INT } \\
\text { Int_opt }::=\text { INT | } \varepsilon \\
\text { Pow_opt }::=\text { '^' INT | } \varepsilon
\end{array}
$$

Running Example: Simplifying Polynomials

- We consider the following task: translating polynomials into normal form.

$$
(2 x+2)\left(3 x^{2}-1\right)+2 x=6 x^{3}+6 x-2
$$

- Grammar:

$$
\begin{array}{ll}
\text { Expr } & ::=\text { Tm | -Tm | Expr }+ \text { Tm | Expr - Tm } \\
\text { Tm } & ::=\text { Mon | (Expr) | Tm (Expr) } \\
\text { Mon } & ::=\text { Int_opt 'x' Pow_opt | INT } \\
\text { Int_opt }::=\text { INT | } \varepsilon \\
\text { Pow_opt }::=\text { '^' INT | } \varepsilon
\end{array}
$$

- Input example:

$$
(2 x+2)\left(3 x^{\wedge} 2-1\right)+2 x
$$

Implementation: Lex \& Yacc

Implementation: Lex \& Yacc

- YACC = Yet Another Compiler Compiler

Implementation: Lex \& Yacc

- YACC = Yet Another Compiler Compiler

Implementation: Lex \& Yacc

- YACC = Yet Another Compiler Compiler
- In Python, we use PLY (Python Lex \& Yacc).

PLY Code for Lexical Analysis

- Declare tokens and literals (one-symbol tokens):
tokens = ['INT']
literals = ['+','-','(',')','^','x']

PLY Code for Lexical Analysis

- Declare tokens and literals (one-symbol tokens):

```
tokens = [ 'INT' ]
literals = ['+','-','(',')','^','x']
```

- For each token, declare a "t_"-function: def t_INT(t):
r'\d+'
try:
t.value = int(t.value)
except ValueError:
print "Too large!", t.value t.value = 0
return t

PLY Code for Lexical Analysis

- $r^{\prime} \backslash d+$ ' is a regular expression for sequences of decimal numbers.

PLY Code for Lexical Analysis

- $r^{\prime} \backslash d+$ ' is a regular expression for sequences of decimal numbers.
- Another example: regular expression for names (identifiers)

$$
\text { t_NAME } \quad=r^{\prime}\left[a-z A-Z_{-}\right]\left[a-z A-Z 0-9 _\right] *^{\prime}
$$

PLY Code for Lexical Analysis

- r ' $\backslash d+$ ' is a regular expression for sequences of decimal numbers.
- Another example: regular expression for names (identifiers)
t_NAME = r'[a-zA-Z_][a-zA-Z0-9_]*'
- Finally, build the lexer:
import ply.lex as lex
lex.lex()

PLY Code for Parsing

- Each rule of the grammar is implemented as a "p_"-function: def polymult(p,q) :

$$
r=[]
$$

for i in xrange(len(p)) : for j in xrange(len(q)) : safeadd(r,i+j,p[i]*q[j])
return r
def p_tm_mult(p):
"tm : tm '(' expr ')'"
$p[0]=\operatorname{polymult}(p[1], p[3])$

PLY Code for Parsing

def p_tm_mult(p):
"tm : tm '(' expr ')'" $\mathrm{p}[0]=\operatorname{polymult}(\mathrm{p}[1], \mathrm{p}[3])$

PLY Code for Parsing

def p_tm_mult(p):
"tm : tm '(' expr ')'"
$\mathrm{p}[0]=\operatorname{polymult}(\mathrm{p}[1], \mathrm{p}[3])$

- A "p_"-function generates an object p[0], using $\mathrm{p}[1], \mathrm{p}[2], \ldots$, which are obtained from the lexer or recursively from parsing.

PLY Code for Parsing

- Finally, build the parser:
import ply.yacc as yacc yacc.yacc()

PLY Code for Parsing

- Finally, build the parser:
import ply.yacc as yacc yacc.yacc()
- The code of PLY examples is available on the course's webpage: https://homepage.mi-ras.ru/~sk/lehre/dm_hse/

PLY Code for Parsing

- Finally, build the parser: import ply.yacc as yacc yacc.yacc()
- The code of PLY examples is available on the course's webpage: https://homepage.mi-ras.ru/~sk/lehre/dm_hse/
- For priorities of operations, see another example available on the webpage: calculator.

Good luck!

Resolution: Completeness Proof

Theorem

If one cannot obtain the empty clause by applying resolutions, starting from the given CNF, then the CNF is satisfiable.

Resolution: Completeness Proof

Theorem

If one cannot obtain the empty clause by applying resolutions, starting from the given CNF, then the CNF is satisfiable.

- We prove this theorem using induction on the number of variables.

Resolution: Completeness Proof

Theorem

If one cannot obtain the empty clause by applying resolutions, starting from the given CNF, then the CNF is satisfiable.

- We prove this theorem using induction on the number of variables.
- That is, we establish it for zero variables (trivial) and then validate the step from n to $n+1$ variables.

Resolution: Completeness Proof

- Zero variables: the only possible clause is \perp, therefore, our CNF is empty.

Resolution: Completeness Proof

- Zero variables: the only possible clause is \perp, therefore, our CNF is empty.
- From n to $n+1$. Let the extra variable be $p_{n+1}=q$ and let \mathcal{S} denote the saturation of our CNF.

Resolution: Completeness Proof

- Zero variables: the only possible clause is \perp, therefore, our CNF is empty.
- From n to $n+1$. Let the extra variable be $p_{n+1}=q$ and let \mathcal{S} denote the saturation of our CNF.
- Take all clauses which do not include \bar{q}, and remove q out of them. This gives \mathcal{S}^{+}.

Resolution: Completeness Proof

- Zero variables: the only possible clause is \perp, therefore, our CNF is empty.
- From n to $n+1$. Let the extra variable be $p_{n+1}=q$ and let \mathcal{S} denote the saturation of our CNF.
- Take all clauses which do not include \bar{q}, and remove q out of them. This gives \mathcal{S}^{+}.
- Dually, take clauses without q and remove \bar{q}. This gives \mathcal{S}^{-}.

Resolution: Completeness Proof

- Both \mathcal{S}^{+}and \mathcal{S}^{-}are saturated.

Resolution: Completeness Proof

- Both \mathcal{S}^{+}and \mathcal{S}^{-}are saturated.
- Indeed, any new resolution in \mathcal{S}^{+}or in \mathcal{S}^{-} would induce a resolution in \mathcal{S}.

Resolution: Completeness Proof

- Both \mathcal{S}^{+}and \mathcal{S}^{-}are saturated.
- Indeed, any new resolution in \mathcal{S}^{+}or in \mathcal{S}^{-} would induce a resolution in \mathcal{S}.
- Let us show that at least one of \mathcal{S}^{+}and \mathcal{S}^{-} is satisfiable.

Resolution: Completeness Proof

- Both \mathcal{S}^{+}and \mathcal{S}^{-}are saturated.
- Indeed, any new resolution in \mathcal{S}^{+}or in \mathcal{S}^{-} would induce a resolution in \mathcal{S}.
- Let us show that at least one of \mathcal{S}^{+}and \mathcal{S}^{-} is satisfiable.
- Suppose, both \mathcal{S}^{+}and \mathcal{S}^{-}include \perp.

Resolution: Completeness Proof

- Both \mathcal{S}^{+}and \mathcal{S}^{-}are saturated.
- Indeed, any new resolution in \mathcal{S}^{+}or in \mathcal{S}^{-} would induce a resolution in \mathcal{S}.
- Let us show that at least one of \mathcal{S}^{+}and \mathcal{S}^{-} is satisfiable.
- Suppose, both \mathcal{S}^{+}and \mathcal{S}^{-}include \perp.
- Then \mathcal{S} includes both q and \bar{q}, and therefore \perp. Contradiction.

Resolution: Completeness Proof

- Both \mathcal{S}^{+}and \mathcal{S}^{-}are saturated.
- Indeed, any new resolution in \mathcal{S}^{+}or in \mathcal{S}^{-} would induce a resolution in \mathcal{S}.
- Let us show that at least one of \mathcal{S}^{+}and \mathcal{S}^{-} is satisfiable.
- Suppose, both \mathcal{S}^{+}and \mathcal{S}^{-}include \perp.
- Then \mathcal{S} includes both q and \bar{q}, and therefore \perp. Contradiction.
- Since \mathcal{S}^{+}and \mathcal{S}^{-}use only p_{1}, \ldots, p_{n}, we already know our theorem for them.

Resolution: Completeness Proof

- Both \mathcal{S}^{+}and \mathcal{S}^{-}are saturated.
- Indeed, any new resolution in \mathcal{S}^{+}or in \mathcal{S}^{-} would induce a resolution in \mathcal{S}.
- Let us show that at least one of \mathcal{S}^{+}and \mathcal{S}^{-} is satisfiable.
- Suppose, both \mathcal{S}^{+}and \mathcal{S}^{-}include \perp.
- Then \mathcal{S} includes both q and \bar{q}, and therefore \perp. Contradiction.
- Since \mathcal{S}^{+}and \mathcal{S}^{-}use only p_{1}, \ldots, p_{n}, we already know our theorem for them.
- The one which does not include \perp is satisfiable.

Resolution: Completeness Proof

- If \mathcal{S}^{+}is satisfiable, take the satisfying assignment and let $q=0$.

Resolution: Completeness Proof

- If \mathcal{S}^{+}is satisfiable, take the satisfying assignment and let $q=0$.
- Clauses without \bar{q} are already satisfied via \mathcal{S}^{+}.

Resolution: Completeness Proof

- If \mathcal{S}^{+}is satisfiable, take the satisfying assignment and let $q=0$.
- Clauses without \bar{q} are already satisfied via \mathcal{S}^{+}.
- Clauses with \bar{q} are satisfied by $\bar{q}=1$.

Resolution: Completeness Proof

- If \mathcal{S}^{+}is satisfiable, take the satisfying assignment and let $q=0$.
- Clauses without \bar{q} are already satisfied via \mathcal{S}^{+}.
- Clauses with \bar{q} are satisfied by $\bar{q}=1$.
- Dually, if \mathcal{S}^{-}is satisfiable, take $q=1$.

Beyond Propositional: Predicate Logic

- Of course, Boolean (propositional) logic is too weak for many situations.

Beyond Propositional: Predicate Logic

- Of course, Boolean (propositional) logic is too weak for many situations.
- In order to allow richer expressive capabilities, more powerful logical languages were introduced.

Beyond Propositional: Predicate Logic

- Of course, Boolean (propositional) logic is too weak for many situations.
- In order to allow richer expressive capabilities, more powerful logical languages were introduced.
- One of those is first-order predicate logic, which is usually used to formalize mathematics.

Predicate Logic

- In predicate logic, we have individual variables which range over a domain.

Predicate Logic

- In predicate logic, we have individual variables which range over a domain.
- Atomic formulae are of the form $P(x, y, z, \ldots)$, where P is a predicate symbol.

Predicate Logic

- In predicate logic, we have individual variables which range over a domain.
- Atomic formulae are of the form $P(x, y, z, \ldots)$, where P is a predicate symbol.
- E.g., a two-argument P denotes a binary relation (say, $x<y$, written as $<(x, y)$).

Predicate Logic

- In predicate logic, we have individual variables which range over a domain.
- Atomic formulae are of the form $P(x, y, z, \ldots)$, where P is a predicate symbol.
- E.g., a two-argument P denotes a binary relation (say, $x<y$, written as $<(x, y)$).
- Besides propositional operations ($\rightarrow, \vee, \wedge$, \neg), there are quantifiers \forall (forall) and \exists (exists).

Predicate Logic: Example

$$
\forall x \forall y(R(x, y) \rightarrow \exists z(R(x, z) \wedge R(z, y)))
$$

Predicate Logic: Example

$$
\forall x \forall y(x<y \rightarrow \exists z(x<z \wedge z<y))
$$

Predicate Logic: Example

$$
\forall x \forall y(x<y \rightarrow \exists z(x<z \wedge z<y))
$$

- This formula expresses the density of the order.

Predicate Logic: Example

$$
\forall x \forall y(x<y \rightarrow \exists z(x<z \wedge z<y))
$$

- This formula expresses the density of the order.
- Its truth depends on the interpretation: e.g., it is true on \mathbb{Q} (rational numbers), but false on \mathbb{Z} (integers).

Predicate Logic: Example

$$
\forall x \forall y(x<y \rightarrow \exists z(x<z \wedge z<y))
$$

- This formula expresses the density of the order.
- Its truth depends on the interpretation: e.g., it is true on \mathbb{Q} (rational numbers), but false on \mathbb{Z} (integers).
- So, it is satisfiable, but not universally true.

Predicate Logic: Example

$$
\forall x \forall y(x<y \rightarrow \exists z(x<z \wedge z<y))
$$

- This formula expresses the density of the order.
- Its truth depends on the interpretation: e.g., it is true on \mathbb{Q} (rational numbers), but false on \mathbb{Z} (integers).
- So, it is satisfiable, but not universally true.
- Again, universal truth and satisfiability are dual.

Algorithmic Issues

- Unfortunately, satisfiability in predicate logic (unlike Boolean logic) is algorithmically undecidable.

Algorithmic Issues

- Unfortunately, satisfiability in predicate logic (unlike Boolean logic) is algorithmically undecidable.
- This means that there is theoretically no algorithm for solving it, even without any time constraints.

Algorithmic Issues

- Unfortunately, satisfiability in predicate logic (unlike Boolean logic) is algorithmically undecidable.
- This means that there is theoretically no algorithm for solving it, even without any time constraints.
- This motivates studying decidable fragments of predicate logic, where we restrict its expressivity in order to gain decidability.

Algorithmic Issues

- Unfortunately, satisfiability in predicate logic (unlike Boolean logic) is algorithmically undecidable.
- This means that there is theoretically no algorithm for solving it, even without any time constraints.
- This motivates studying decidable fragments of predicate logic, where we restrict its expressivity in order to gain decidability.
- Toy example: predicate logic with only unary predicates.

Decidable Fragments

- More interesting examples include description logics used in formal ontologies (used in OWL, SNOMED CT etc).

Decidable Fragments

- More interesting examples include description logics used in formal ontologies (used in OWL, SNOMED CT etc).
- These systems are between propositional and predicate logics and are used in knowledge representation.

Decidable Fragments

- More interesting examples include description logics used in formal ontologies (used in OWL, SNOMED CT etc).
- These systems are between propositional and predicate logics and are used in knowledge representation.
- Knowledge bases extend relational databases by a richer, logically enhanced language of queries. (This requires, obviously, fast algorithms.)

