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Satisfiability

- We continue discussing satisfiability of
Boolean formula.

- A satisfying assignment is an assignment of
0’s and 1's to variables, which makes the
formula true (value = 1).

- Satisfiability is a model example of a very
general situation of finding (more
precisely: checking for existence) an object
with given properties.
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Resolution Method

- Recall that resolution method is a method
of determining whether a Boolean formula
given in CNF is satisfiable.

- A CNF is a conjunction of clauses, where
each clause is a disjunction of literals (e.g,,
ZVyVZz).

- The algorithm saturates the CNF by adding
all clauses which can be generated by the
resolution rule:

AVp BVD
AV B
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- If the empty clause (L) got obtained, the
CNF is not satisfiable (because the
resolution rule keeps validity).

- Moreover, by completeness theorem this is
a criterion: if the empty clause is not
obtained, the CNF is satisfiable.
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Resolution Method

- However, the non-derivability of the empty
clause does not give us the satisfying
assignment itself.

- In other words, the method solves the
decision problems (“yes”/“no”), but not the
search problem.

- If we are lucky enough, and the CNF has
only one satisfying assignment, then after
saturation we get isolated literals (like x or
vy, for example), which dictate the desired
satisfying assignment (e.g, z =1 or y = 0).
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Resolution Method

- In other cases, we can use the following
consideration.

Proposition
If a saturated CNF S includes neither L nor T

as an isolated literal, then § A x is also
satisfiable. Same for swapping x and .

- In particular, if § Is satisfiable and includes
neither x nor z, we can make an arbitrary
choice for the value of z.
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Resolution Method

- However, after making this arbitrary choice,
we have to saturate § A z (or § A Z) again
before considering another variable.

- For example, the CNF (z V) A (z V 2) IS
saturated, but choosing z = 0 (adding z)
allows new resolutions giving y and z, and
thus dictating values for all other variables.
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Resolution Method

Proposition

If a saturated CNF 8 includes neither 1 norx
as an isolated literal, then § A x is also
satisfiable. Same for swapping x and .

- The proof of the proposition is easy.

- Indeed, new resolutions applied when we
saturate § A z, should involve z.

- Therefore, if such a resolution generates L,
there should have been = in the original S.
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Example
(PVrvs),(TVae),(sVDpV2), (ZVi),p

(rvs),(s5Vz),pVsVvq),pVvrVvz),sSVpVi),
(rvz),dVqVz),(sVq),E5Vt),(rvpVit),

(qVit),(z2Vq),(rvt)

s,2,t,(PV 2),(p Vi)
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Resolution for 2-CNF

- If clauses include at least 3 literals,
resolution can lead to growth:

cVyVp zVwVDp
rVyVzVuw

- This makes saturation a potentially
exponential procedure.
- However, for 2-CNF (each clause includes

no more than 2 literals) the clauses do not
grow:
Vp

Tz Vp
T

IR

V
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Resolution for 2-CNF

- Thus, the total number of possible clauses
does not exceed 4n? + 2n + 1, where n is
the number of variables.

- This makes the saturation process
polynomial.

- This can be organized as follows: take each
clause from the list, starting from the
second one, and try to resolve it against
eariler ones. Does it give a new clause?

- New clauses are added to the bottom of
the list.



Home Assignment # 1

- Satisfiability for 2-CNF will be your task for
HW #1.

- The easy version is to check satisfiability
(using resolution method).

- The full task is to check satisfiability and, if
the answer Is “yes,” to return one of the
satisfying assignments.
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- It is important to keep in mind that the
input is given in human-readable form, as

a string representing the formula.
- The program (in Python) should implement
two functions:

1. 1s_satisfiable, which takes a CNF and
answers True or False, depending on
whether it is satisfiable.

2. sat_assignment, which takes a CNF and
returns a satisfying assignment as an
associative array:

{ 'x': True, 'y': False, 'z': True }
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Home Assignment # 1

- Conjunction, disjunction, negation, and
implication, are, resp., /\, \/, ~, ->.

- Literals: x or ~x, where x is an arbitrary
letter.

+ Clauses: (Ly \/ Ly) or (L, -> L,), where
L, and L, are literals.

- The CNF is a conjunction (/\) of clauses.
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HW # 1: Practice in Boolean Logic

- First, one needs to translate the input into
a machine-digestable form (this is called
parsing of the input).

- Grammar for CNFs:

CNF ::= Clause | CNF /\ Clause
Clause ::= (Lit \/ Lit) | (Lit -> Lit)
Lit ::= Var | ~Var

- We shall use specialized software, PLY
(Python Lex & Yacc), in order to automatize
the parsing process.



The Parsing Workflow

input
(symbols)

Syntax Analyzer
(Parser)

Lexical
Analyzer

T

stream of
tokens

recursive
structure
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Lexical Analysis

- Input (stream of symbols):

int main(void)

{
printf("Hello, World!\n");
}
- Output (stream of tokens):
KW_INT IDENT(‘main’) ‘v Kw_VOID

- Tokens are much more convenient to work
with (in the grammar).
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Running Example: Simplifying Polynomials

- We consider the following task: translating
polynomials into normal form.

(22 +2)(32%2 — 1) + 22 = 623 + 62 — 2

- Grammar:
Expr = Tm | -Tm | Expr + Tm | Expr - Tm
m = Mon | (Expr) | Tm (Expr)
Mon = Int_opt 'x' Pow_opt | INT
Int_opt ::= INT | ¢
Pow_opt ::= '"" INT | ¢

- Input example:
(2x+2)(3x"2-1)+2x
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Implementation: Lex & Yacc

input
(symbols)

- YACC = Yet Another Compiler Compiler

Syntax Analyzer

(Parser)
YACC

Lexical
Analyzer
Lex

[

stream of
tokens

recursive

structure

- In Python, we use PLY (Python Lex & Yacc).
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PLY Code for Lexical Analysis

- Declare tokens and literals (one-symbol

tokens):
tokens = [ "INT' ]
'Literals: [|+|'|_|'|(|’| "'A',IXI

- For each token, declare a “t_"-function:

def t_INT(t):

r'\d+"

try:
t.value = int(t.value)

except ValueError:
print "Too large!", t.value
t.value = 0

return t
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PLY Code for Lexical Analysis

- r'\d+"' is a regular expression for
sequences of decimal numbers.

- Another example: regular expression for
names (identifiers)

t_NAME = r'[a-zA-Z_][a-zA-Z0-9_]+'

- Finally, build the lexer:

import ply.lex as lex
lex.lex()



PLY Code for Parsing

- Each rule of the grammar is implemented
as a “p_"-function:

def polymult(p,q) :
r = []
for i in xrange(len(p)) :
for j in xrange(len(q)) :
safeadd(r,i+j,pli]*ql[3j])
return r

def p_tm_mult(p):
"tm : tm '(' expr ')'"
p[@] = polymult(p[1],p[3])
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PLY Code for Parsing

def p_tm_mult(p):
"tm : tm '(' expr ')'"
p[0] = polymult(p[1],p[3])

- A “p_"-function generates an object p[ 0],
using p[11], p[2], .., which are obtained
from the lexer or recursively from parsing.
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- Finally, build the parser:

import ply.yacc as yacc
yacc.yacc()


https://homepage.mi-ras.ru/~sk/lehre/dm_hse/

PLY Code for Parsing

- Finally, build the parser:
import ply.yacc as yacc
yacc.yacc()

- The code of PLY examples is available on

the course’s webpage:
https://homepage.mi-ras.ru/~sk/lehre/dm_hse/


https://homepage.mi-ras.ru/~sk/lehre/dm_hse/

PLY Code for Parsing

- Finally, build the parser:

import ply.yacc as yacc
yacc.yacc()

- The code of PLY examples is available on
the course’s webpage:
https://homepage.mi-ras.ru/~sk/lehre/dm_hse/

- For priorities of operations, see another
example available on the webpage:
calculator.


https://homepage.mi-ras.ru/~sk/lehre/dm_hse/

Good luck!
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Resolution: Completeness Proof

Theorem

If one cannot obtain the empty clause by
applying resolutions, starting from the given
CNF, then the CNF is satisfiable.

- We prove this theorem using induction on
the number of variables.

- That is, we establish it for zero variables
(trivial) and then validate the step from n
to n + 1 variables.
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Resolution: Completeness Proof

- Zero variables: the only possible clause is
1, therefore, our CNF is empty.

- From n to n + 1. Let the extra variable be
Pny1 = ¢ and let § denote the saturation of
our CNF.

- Take all clauses which do not include g,
and remove ¢ out of them. This gives S.

- Dually, take clauses without ¢ and remove
q. This gives §—.
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Resolution: Completeness Proof

- Both 8™ and & are saturated.

- Indeed, any new resolution in 8T orin &~
would induce a resolution in 8.

- Let us show that at least one of " and §—
Is satisfiable.

- Suppose, both §T and & include L.

- Then 8 includes both ¢ and g, and therefore
L. Contradiction.

- Since 8T and &~ use only pq, ..., p,,, W€
already know our theorem for them.

- The one which does not include L is
satisfiable.
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Resolution: Completeness Proof

- If 8T is satisfiable, take the satisfying
assignment and let ¢ = 0.

- Clauses without g are already satisfied via
ST,

- Clauses with g are satisfied by g = 1.

- Dually, if §~ is satisfiable, take ¢ = 1.
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Beyond Propositional: Predicate Logic

- Of course, Boolean (propositional) logic is
too weak for many situations.

- In order to allow richer expressive
capabilities, more powerful logical
languages were introduced.

- One of those is first-order predicate logic,
which is usually used to formalize
mathematics.
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Predicate Logic

- In predicate logic, we have individual
variables which range over a domain.

- Atomic formulae are of the form
P(z,y,z,...), where P is a predicate
symbol.

- E.g, atwo-argument P denotes a binary
relation (say, z < y, written as < (z,y)).

- Besides propositional operations (—, V, A,
—), there are quantifiers V (forall) and
3 (exists).



Predicate Logic: Example

VaVy(R(z,y) — 32(R(x,2z) A R(2,y)))



Predicate Logic: Example

Vavy(z <y — 3z(z < zAz<y))



Predicate Logic: Example

Vavy(z <y — 3z(z < zAz<y))

- This formula expresses the density of the
order.



Predicate Logic: Example

VaVy(z <y — Jz(z < 2 Az < y))

- This formula expresses the density of the
order.

- Its truth depends on the interpretation:
e.g., itistrue on Q (rational numbers), but
false on Z (integers).



Predicate Logic: Example

VaVy(z <y — Jz(z < 2 Az < y))

- This formula expresses the density of the
order.

- Its truth depends on the interpretation:
e.g., itistrue on Q (rational numbers), but

false on Z (integers).
- So, it is satisfiable, but not universally true.



Predicate Logic: Example

VaVy(z <y — Jz(z < 2 Az < y))

- This formula expresses the density of the
order.

- Its truth depends on the interpretation:
e.g., itistrue on Q (rational numbers), but
false on Z (integers).

- So, it is satisfiable, but not universally true.

- Again, universal truth and satisfiability are
dual.
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Algorithmic Issues

- Unfortunately, satisfiability in predicate
logic (unlike Boolean logic) is
algorithmically undecidable.

- This means that there is theoretically no
algorithm for solving it, even without any time
constraints.

- This motivates studying decidable
fragments of predicate logic, where we
restrict its expressivity in order to gain
decidability.

- Toy example: predicate logic with only unary
predicates.
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Decidable Fragments

- More interesting examples include
description logics used in formal
ontologies (used in OWL, SNOMED CT etc).

- These systems are between propositional
and predicate logics and are used In
knowledge representation.

- Knowledge bases extend relational
databases by a richer, logically enhanced
language of queries. (This requires,
obviously, fast algorithms.)



