HW #1: Resolution Method and Parsing

Stepan Kuznetsov

Discrete Math Bridging Course, HSE University

Satisfiability

• We continue discussing **satisfiability** of Boolean formula.

Satisfiability

- We continue discussing **satisfiability** of Boolean formula.
- A satisfying assignment is an assignment of O's and 1's to variables, which makes the formula true (value = 1).

Satisfiability

- We continue discussing **satisfiability** of Boolean formula.
- A satisfying assignment is an assignment of O's and 1's to variables, which makes the formula true (value = 1).
- Satisfiability is a model example of a very general situation of **finding** (more precisely: checking for existence) an object with given properties.

• Recall that **resolution method** is a method of determining whether a Boolean formula given in CNF is satisfiable.

- Recall that **resolution method** is a method of determining whether a Boolean formula given in CNF is satisfiable.
- A **CNF** is a conjunction of clauses, where each clause is a disjunction of literals (e.g., $\overline{x} \lor y \lor \overline{z}$).

- Recall that **resolution method** is a method of determining whether a Boolean formula given in CNF is satisfiable.
- A **CNF** is a conjunction of clauses, where each clause is a disjunction of literals (e.g., $\overline{x} \lor y \lor \overline{z}$).
- The algorithm **saturates** the CNF by adding all clauses which can be generated by the **resolution rule**:

$$\frac{A \lor p \quad B \lor \overline{p}}{A \lor B}$$

 If the empty clause (⊥) got obtained, the CNF is not satisfiable (because the resolution rule keeps validity).

- If the empty clause (⊥) got obtained, the CNF is not satisfiable (because the resolution rule keeps validity).
- Moreover, by **completeness theorem** this is a criterion: if the empty clause is not obtained, the CNF **is** satisfiable.

• However, the non-derivability of the empty clause does not give us the satisfying assignment itself.

- However, the non-derivability of the empty clause does not give us the satisfying assignment itself.
- In other words, the method solves the decision problems ("yes"/"no"), but not the search problem.

- However, the non-derivability of the empty clause does not give us the satisfying assignment itself.
- In other words, the method solves the decision problems ("yes"/"no"), but not the search problem.
- If we are lucky enough, and the CNF has only one satisfying assignment, then after saturation we get **isolated** literals (like x or y
 , for example), which dictate the desired satisfying assignment (e.g., x = 1 or y = 0).

• In other cases, we can use the following consideration.

• In other cases, we can use the following consideration.

Proposition

If a saturated CNF S includes neither \perp nor \overline{x} as an isolated literal, then $S \wedge x$ is also satisfiable. Same for swapping x and \overline{x} .

• In other cases, we can use the following consideration.

Proposition

If a saturated CNF S includes neither \perp nor \overline{x} as an isolated literal, then $S \wedge x$ is also satisfiable. Same for swapping x and \overline{x} .

 In particular, if S is satisfiable and includes neither x nor x

 , we can make an arbitrary choice for the value of x.

• However, after making this arbitrary choice, we have to saturate $S \wedge x$ (or $S \wedge \overline{x}$) again before considering another variable.

- However, after making this arbitrary choice, we have to saturate $S \wedge x$ (or $S \wedge \overline{x}$) again before considering another variable.
- For example, the CNF (x ∨ ȳ) ∧ (x ∨ z) is saturated, but choosing x = 0 (adding x̄) allows new resolutions giving ȳ and z, and thus dictating values for all other variables.

Proposition

If a saturated CNF S includes neither \perp nor \overline{x} as an isolated literal, then $S \wedge x$ is also satisfiable. Same for swapping x and \overline{x} .

Proposition

If a saturated CNF S includes neither \perp nor \overline{x} as an isolated literal, then $S \wedge x$ is also satisfiable. Same for swapping x and \overline{x} .

• The proof of the proposition is easy.

Proposition

If a saturated CNF S includes neither \perp nor \overline{x} as an isolated literal, then $S \wedge x$ is also satisfiable. Same for swapping x and \overline{x} .

- The proof of the proposition is easy.
- Indeed, new resolutions applied when we saturate $\mathcal{S} \wedge x$, should involve x.

Proposition

If a saturated CNF S includes neither \perp nor \overline{x} as an isolated literal, then $S \wedge x$ is also satisfiable. Same for swapping x and \overline{x} .

- The proof of the proposition is easy.
- Indeed, new resolutions applied when we saturate $\mathcal{S} \wedge x$, should involve x.
- Therefore, if such a resolution generates \perp , there should have been \overline{x} in the original S.

$(\overline{p} \lor r \lor s), (\overline{r} \lor q), (\overline{s} \lor \overline{p} \lor z), (\overline{z} \lor t), p$

$$(\overline{p} \lor r \lor s), (\overline{r} \lor q), (\overline{s} \lor \overline{p} \lor z), (\overline{z} \lor t), p$$

$$(r \lor s), (\overline{s} \lor z), (\overline{p} \lor s \lor q), (\overline{p} \lor r \lor z), (\overline{s} \lor \overline{p} \lor t),$$

$$(\overline{p} \lor r \lor s), (\overline{r} \lor q), (\overline{s} \lor \overline{p} \lor z), (\overline{z} \lor t), p$$

$$\begin{split} &(r \lor s), (\overline{s} \lor z), (\overline{p} \lor s \lor q), (\overline{p} \lor r \lor z), (\overline{s} \lor \overline{p} \lor t), \\ &(r \lor z), (\overline{p} \lor q \lor z), (s \lor q), (\overline{s} \lor t), (r \lor \overline{p} \lor t), \end{split}$$

$$(\overline{p} \lor r \lor s), (\overline{r} \lor q), (\overline{s} \lor \overline{p} \lor z), (\overline{z} \lor t), p$$

$$\begin{split} &(r \lor s), (\overline{s} \lor z), (\overline{p} \lor s \lor q), (\overline{p} \lor r \lor z), (\overline{s} \lor \overline{p} \lor t), \\ &(r \lor z), (\overline{p} \lor q \lor z), (s \lor q), (\overline{s} \lor t), (r \lor \overline{p} \lor t), \\ &(q \lor t), (z \lor q), (r \lor t) \end{split}$$

$$(\overline{p} \lor r \lor s), (\overline{r} \lor q), (\overline{s} \lor \overline{p} \lor z), (\overline{z} \lor t), p$$

$$\begin{split} &(r \lor s), (\overline{s} \lor z), (\overline{p} \lor s \lor q), (\overline{p} \lor r \lor z), (\overline{s} \lor \overline{p} \lor t), \\ &(r \lor z), (\overline{p} \lor q \lor z), (s \lor q), (\overline{s} \lor t), (r \lor \overline{p} \lor t), \\ &(q \lor t), (z \lor q), (r \lor t) \end{split}$$

$$(\overline{p} \lor r \lor s), (\overline{r} \lor q), (\overline{s} \lor \overline{p} \lor z), (\overline{z} \lor t), p$$

$$\begin{split} &(r \lor s), (\overline{s} \lor z), (\overline{p} \lor s \lor q), (\overline{p} \lor r \lor z), (\overline{s} \lor \overline{p} \lor t), \\ &(r \lor z), (\overline{p} \lor q \lor z), (s \lor q), (\overline{s} \lor t), (r \lor \overline{p} \lor t), \\ &(q \lor t), (z \lor q), (r \lor t) \end{split}$$

s

$$(\overline{p} \lor r \lor s), (\overline{r} \lor q), (\overline{s} \lor \overline{p} \lor z), (\overline{z} \lor t), p$$

$$\begin{split} &(r \lor s), (\overline{s} \lor z), (\overline{p} \lor s \lor q), (\overline{p} \lor r \lor z), (\overline{s} \lor \overline{p} \lor t), \\ &(r \lor z), (\overline{p} \lor q \lor z), (s \lor q), (\overline{s} \lor t), (r \lor \overline{p} \lor t), \\ &(q \lor t), (z \lor q), (r \lor t) \end{split}$$

$$s, z, t, (\overline{p} \lor z), (\overline{p} \lor t)$$

• If clauses include at least 3 literals, resolution can lead to growth:

 $\frac{x \vee \overline{y} \vee p \quad z \vee w \vee \overline{p}}{x \vee \overline{y} \vee z \vee w}$

• If clauses include at least 3 literals, resolution can lead to growth:

$$\frac{x \vee \overline{y} \vee p \quad z \vee w \vee \overline{p}}{x \vee \overline{y} \vee z \vee w}$$

• This makes saturation a potentially exponential procedure.

• If clauses include at least 3 literals, resolution can lead to growth:

$$\frac{x \vee \overline{y} \vee p \quad z \vee w \vee \overline{p}}{x \vee \overline{y} \vee z \vee w}$$

- This makes saturation a potentially exponential procedure.
- However, for 2-CNF (each clause includes no more than 2 literals) the clauses do not grow:

$$\frac{x \vee p \quad \overline{z} \vee \overline{p}}{x \vee \overline{z}}$$

• Thus, the total number of possible clauses does not exceed $4n^2 + 2n + 1$, where *n* is the number of variables.

- Thus, the total number of possible clauses does not exceed $4n^2 + 2n + 1$, where *n* is the number of variables.
- This makes the saturation process **polynomial.**

- Thus, the total number of possible clauses does not exceed $4n^2 + 2n + 1$, where *n* is the number of variables.
- This makes the saturation process **polynomial.**
- This can be organized as follows: take each clause from the list, starting from the second one, and try to resolve it against eariler ones. Does it give a new clause?

- Thus, the total number of possible clauses does not exceed $4n^2 + 2n + 1$, where *n* is the number of variables.
- This makes the saturation process **polynomial.**
- This can be organized as follows: take each clause from the list, starting from the second one, and try to resolve it against eariler ones. Does it give a new clause?
- New clauses are added to the bottom of the list.

Home Assignment # 1

- Satisfiability for 2-CNF will be your task for HW # 1.
- The **easy** version is to check satisfiability (using resolution method).
- The **full** task is to check satisfiability **and**, if the answer is "yes," to return one of the satisfying assignments.
• It is important to keep in mind that the input is given **in human-readable form,** as a string representing the formula.

- It is important to keep in mind that the input is given in human-readable form, as a string representing the formula.
- The program (in Python) should implement two functions:
 - is_satisfiable, which takes a CNF and answers True or False, depending on whether it is satisfiable.
 - 2. **sat_assignment**, which takes a CNF and returns a satisfying assignment as an associative array:

{ 'x': True, 'y': False, 'z': True }

 Conjunction, disjunction, negation, and implication, are, resp., /\, \/, ~, ->.

- Conjunction, disjunction, negation, and implication, are, resp., /\, \/, ~, ->.
- Literals: **x** or **~x**, where **x** is an arbitrary letter.

- Conjunction, disjunction, negation, and implication, are, resp., /\, \/, ~, ->.
- Literals: **x** or **~x**, where **x** is an arbitrary letter.
- Clauses: $(L_1 \setminus / L_2)$ or $(L_1 \rightarrow L_2)$, where L_1 and L_2 are literals.

- Conjunction, disjunction, negation, and implication, are, resp., /\, \/, ~, ->.
- Literals: **x** or **~x**, where **x** is an arbitrary letter.
- Clauses: $(L_1 \setminus / L_2)$ or $(L_1 \rightarrow L_2)$, where L_1 and L_2 are literals.
- The CNF is a conjunction (/ \setminus) of clauses.

HW # 1: Practice in Boolean Logic

 First, one needs to translate the input into a machine-digestable form (this is called parsing of the input).

HW # 1: Practice in Boolean Logic

- First, one needs to translate the input into a machine-digestable form (this is called parsing of the input).
- Grammar for CNFs:

```
CNF ::= Clause | CNF /\ Clause
```

```
Clause ::= (Lit \setminus/ Lit) | (Lit -> Lit)
```

```
Lit ::= Var | ~Var
```

HW # 1: Practice in Boolean Logic

- First, one needs to translate the input into a machine-digestable form (this is called parsing of the input).
- Grammar for CNFs:

CNF ::= Clause | CNF /\ Clause

```
Clause ::= (Lit \/ Lit) | (Lit -> Lit)
```

```
Lit ::= Var | ~Var
```

• We shall use specialized software, PLY (Python Lex & Yacc), in order to automatize the parsing process.

The Parsing Workflow


```
• Input (stream of symbols):
int main(void)
{
    printf("Hello, World!\n");
}
```

```
• Input (stream of symbols):
int main(void)
{
    printf("Hello, World!\n");
}
```

• Output (stream of **tokens**):

```
• Input (stream of symbols):
int main(void)
{
    printf("Hello, World!\n");
}
```

Output (stream of tokens):
 KW INT

```
• Input (stream of symbols):
int main(void)
{
    printf("Hello, World!\n");
}
```

 \cdot Output (stream of **tokens**):

KW_INT IDENT('main')

```
• Input (stream of symbols):
int main(void)
{
    printf("Hello, World!\n");
}
```

• Output (stream of **tokens**):

```
KW_INT IDENT('main') '('
```

```
• Input (stream of symbols):
int main(void)
{
    printf("Hello, World!\n");
}
```

Output (stream of tokens):
 KW_INT IDENT('main') '(' KW_VOID

```
• Input (stream of symbols):
int main(void)
{
    printf("Hello, World!\n");
}
```

Output (stream of tokens):
 KW_INT IDENT('main') '(' KW_VOID .

• Input (stream of **symbols**):

```
int main(void)
{
    printf("Hello, World!\n");
}
```

- Output (stream of **tokens**):
 - KW_INT IDENT('main') '(' KW_VOID
- Tokens are much more convenient to work with (in the grammar).

• We consider the following task: translating polynomials into normal form.

• We consider the following task: translating polynomials into normal form.

$$(2x+2)(3x^2-1)+2x=6x^3+6x-2$$

• We consider the following task: translating polynomials into normal form.

$$(2x+2)(3x^2-1)+2x=6x^3+6x-2$$

• Grammar:

Expr ::= Tm | -Tm | Expr + Tm | Expr - Tm Tm ::= Mon | (Expr) | Tm (Expr) Mon ::= Int_opt 'x' Pow_opt | INT Int_opt ::= INT | ε Pow_opt ::= '^' INT | ε

• We consider the following task: translating polynomials into normal form.

$$(2x+2)(3x^2-1)+2x=6x^3+6x-2$$

• Grammar:

Expr ::= Tm | -Tm | Expr + Tm | Expr - Tm Tm ::= Mon | (Expr) | Tm (Expr) Mon ::= Int_opt 'x' Pow_opt | INT Int_opt ::= INT | ε Pow_opt ::= '^' INT | ε

• Input example:

 $(2x+2)(3x^2-1)+2x$

• YACC = Yet Another Compiler Compiler

• YACC = Yet Another Compiler Compiler

- YACC = Yet Another Compiler Compiler
- In Python, we use PLY (Python Lex & Yacc).

• Declare tokens and literals (one-symbol tokens):

tokens = ['INT'] literals = ['+','-','(',')','^','x']

• Declare tokens and literals (one-symbol tokens):

tokens = ['INT'] literals = ['+','-','(',')','^','x']

• For each token, declare a "t_"-function:

```
def t_INT(t):
    r'\d+'
    try:
        t.value = int(t.value)
    except ValueError:
        print "Too large!", t.value
        t.value = 0
    return t
```

 r'\d+' is a regular expression for sequences of decimal numbers.

- r'\d+' is a regular expression for sequences of decimal numbers.
- Another example: regular expression for **names** (identifiers)

- r'\d+' is a regular expression for sequences of decimal numbers.
- Another example: regular expression for **names** (identifiers)

t_NAME = r'[a-zA-Z_][a-zA-Z0-9_]*'

• Finally, build the lexer:

import ply.lex as lex lex.lex()

...

 Each rule of the grammar is implemented as a "p_"-function:

```
def polymult(p,q) :
    r = []
    for i in xrange(len(p)) :
        for j in xrange(len(q)) :
            safeadd(r,i+j,p[i]*q[j])
    return r
```

```
def p_tm_mult(p):
    "tm : tm '(' expr ')'"
    p[0] = polymult(p[1],p[3])
```

def p_tm_mult(p):
 "tm : tm '(' expr ')'"
 p[0] = polymult(p[1],p[3])

def p_tm_mult(p): "tm : tm '(' expr ')'" p[0] = polymult(p[1],p[3])

 A "p_"-function generates an object p[0], using p[1], p[2], ..., which are obtained from the lexer or recursively from parsing.

• Finally, build the parser:

```
import ply.yacc as yacc
yacc.yacc()
```

• Finally, build the parser:

```
import ply.yacc as yacc
yacc.yacc()
```

• The code of PLY examples is available on the course's webpage:

https://homepage.mi-ras.ru/~sk/lehre/dm_hse/
PLY Code for Parsing

• Finally, build the parser:

```
import ply.yacc as yacc
yacc.yacc()
```

• The code of PLY examples is available on the course's webpage:

https://homepage.mi-ras.ru/~sk/lehre/dm_hse/

• For priorities of operations, see another example available on the webpage: calculator.

Good luck!

Theorem

If one cannot obtain the empty clause by applying resolutions, starting from the given CNF, then the CNF is satisfiable.

Theorem

If one cannot obtain the empty clause by applying resolutions, starting from the given CNF, then the CNF is satisfiable.

• We prove this theorem using **induction** on the number of variables.

Theorem

If one cannot obtain the empty clause by applying resolutions, starting from the given CNF, then the CNF is satisfiable.

- We prove this theorem using **induction** on the number of variables.
- That is, we establish it for zero variables (trivial) and then validate the **step** from n to n + 1 variables.

• Zero variables: the only possible clause is \perp , therefore, our CNF is empty.

- Zero variables: the only possible clause is ⊥, therefore, our CNF is empty.
- From n to n+1. Let the extra variable be $p_{n+1}=q$ and let ${\mathcal S}$ denote the saturation of our CNF.

- Zero variables: the only possible clause is ⊥, therefore, our CNF is empty.
- From n to n+1. Let the extra variable be $p_{n+1}=q$ and let ${\mathcal S}$ denote the saturation of our CNF.
- Take all clauses which do not include \overline{q} , and remove q out of them. This gives S^+ .

- Zero variables: the only possible clause is ⊥, therefore, our CNF is empty.
- From n to n+1. Let the extra variable be $p_{n+1}=q$ and let ${\mathcal S}$ denote the saturation of our CNF.
- Take all clauses which do not include \overline{q} , and remove q out of them. This gives \mathcal{S}^+ .
- Dually, take clauses without q and remove \overline{q} . This gives \mathcal{S}^- .

- Both \mathcal{S}^+ and \mathcal{S}^- are saturated.

- + Both \mathcal{S}^+ and \mathcal{S}^- are saturated.
 - Indeed, any new resolution in \mathcal{S}^+ or in \mathcal{S}^- would induce a resolution in $\mathcal{S}.$

- Both \mathcal{S}^+ and \mathcal{S}^- are saturated.
 - Indeed, any new resolution in \mathcal{S}^+ or in \mathcal{S}^- would induce a resolution in $\mathcal{S}.$
- Let us show that at least one of \mathcal{S}^+ and \mathcal{S}^- is satisfiable.

- Both \mathcal{S}^+ and \mathcal{S}^- are saturated.
 - Indeed, any new resolution in \mathcal{S}^+ or in \mathcal{S}^- would induce a resolution in $\mathcal{S}.$
- Let us show that at least one of \mathcal{S}^+ and \mathcal{S}^- is satisfiable.
 - Suppose, both \mathcal{S}^+ and \mathcal{S}^- include $\bot.$

- Both \mathcal{S}^+ and \mathcal{S}^- are saturated.
 - Indeed, any new resolution in \mathcal{S}^+ or in \mathcal{S}^- would induce a resolution in $\mathcal{S}.$
- Let us show that at least one of \mathcal{S}^+ and \mathcal{S}^- is satisfiable.
 - Suppose, both \mathcal{S}^+ and \mathcal{S}^- include $\bot.$
 - Then $\mathcal S$ includes both q and $\overline q$, and therefore \perp . Contradiction.

- Both \mathcal{S}^+ and \mathcal{S}^- are saturated.
 - Indeed, any new resolution in \mathcal{S}^+ or in \mathcal{S}^- would induce a resolution in $\mathcal{S}.$
- Let us show that at least one of \mathcal{S}^+ and \mathcal{S}^- is satisfiable.
 - Suppose, both \mathcal{S}^+ and \mathcal{S}^- include $\bot.$
 - Then $\mathcal S$ includes both q and $\overline q$, and therefore \perp . Contradiction.
 - Since \mathcal{S}^+ and \mathcal{S}^- use only p_1,\ldots,p_n , we already know our theorem for them.

- Both \mathcal{S}^+ and \mathcal{S}^- are saturated.
 - Indeed, any new resolution in \mathcal{S}^+ or in \mathcal{S}^- would induce a resolution in $\mathcal{S}.$
- Let us show that at least one of \mathcal{S}^+ and \mathcal{S}^- is satisfiable.
 - Suppose, both \mathcal{S}^+ and \mathcal{S}^- include $\bot.$
 - Then $\mathcal S$ includes both q and $\overline q$, and therefore \perp . Contradiction.
 - Since \mathcal{S}^+ and \mathcal{S}^- use only p_1,\ldots,p_n , we already know our theorem for them.
 - The one which does not include \perp is satisfiable.

• If S^+ is satisfiable, take the satisfying assignment and let q = 0.

- If \mathcal{S}^+ is satisfiable, take the satisfying assignment and let q = 0.
- Clauses without \overline{q} are already satisfied via $\mathcal{S}^+.$

- If \mathcal{S}^+ is satisfiable, take the satisfying assignment and let q = 0.
- Clauses without \overline{q} are already satisfied via $\mathcal{S}^+.$
- Clauses with \overline{q} are satisfied by $\overline{q} = 1$.

- If \mathcal{S}^+ is satisfiable, take the satisfying assignment and let q = 0.
- Clauses without \overline{q} are already satisfied via $\mathcal{S}^+.$
- Clauses with \overline{q} are satisfied by $\overline{q} = 1$.
- Dually, if \mathcal{S}^- is satisfiable, take q = 1.

Beyond Propositional: Predicate Logic

• Of course, Boolean (*propositional*) logic is too weak for many situations.

Beyond Propositional: Predicate Logic

- Of course, Boolean (*propositional*) logic is too weak for many situations.
- In order to allow richer expressive capabilities, more powerful logical languages were introduced.

Beyond Propositional: Predicate Logic

- Of course, Boolean (*propositional*) logic is too weak for many situations.
- In order to allow richer expressive capabilities, more powerful logical languages were introduced.
- One of those is first-order predicate logic, which is usually used to formalize mathematics.

• In predicate logic, we have **individual variables** which range over a domain.

- In predicate logic, we have **individual variables** which range over a domain.
- Atomic formulae are of the form P(x, y, z, ...), where P is a predicate symbol.

- In predicate logic, we have **individual variables** which range over a domain.
- Atomic formulae are of the form P(x, y, z, ...), where P is a predicate symbol.
- E.g., a two-argument P denotes a **binary** relation (say, x < y, written as < (x, y)).

- In predicate logic, we have **individual variables** which range over a domain.
- Atomic formulae are of the form P(x, y, z, ...), where P is a predicate symbol.
- E.g., a two-argument P denotes a **binary** relation (say, x < y, written as < (x, y)).
- Besides propositional operations (→, ∨, ∧, ¬), there are quantifiers ∀ (forall) and ∃ (exists).

 $\forall x \forall y (R(x,y) \to \exists z (R(x,z) \land R(z,y)))$

 $\forall x \forall y (x < y \rightarrow \exists z (x < z \land z < y))$

$\forall x \forall y (x < y \rightarrow \exists z (x < z \land z < y))$

• This formula expresses the *density* of the order.

$\forall x \forall y (x < y \rightarrow \exists z (x < z \land z < y))$

- This formula expresses the *density* of the order.
- Its truth depends on the interpretation:
 e.g., it is true on Q (rational numbers), but false on Z (integers).

$\forall x \forall y (x < y \rightarrow \exists z (x < z \land z < y))$

- This formula expresses the *density* of the order.
- Its truth depends on the interpretation:
 e.g., it is true on Q (rational numbers), but false on Z (integers).
- So, it is **satisfiable**, but not **universally true**.

$\forall x \forall y (x < y \rightarrow \exists z (x < z \land z < y))$

- This formula expresses the *density* of the order.
- Its truth depends on the interpretation:
 e.g., it is true on Q (rational numbers), but false on Z (integers).
- So, it is **satisfiable,** but not **universally true.**
 - Again, universal truth and satisfiability are dual.

Algorithmic Issues

 Unfortunately, satisfiability in predicate logic (unlike Boolean logic) is algorithmically undecidable.

Algorithmic Issues

- Unfortunately, satisfiability in predicate logic (unlike Boolean logic) is algorithmically undecidable.
 - This means that there is theoretically no algorithm for solving it, even without any time constraints.

Algorithmic Issues

- Unfortunately, satisfiability in predicate logic (unlike Boolean logic) is algorithmically undecidable.
 - This means that there is theoretically no algorithm for solving it, even without any time constraints.
- This motivates studying **decidable fragments** of predicate logic, where we restrict its expressivity in order to gain decidability.
Algorithmic Issues

- Unfortunately, satisfiability in predicate logic (unlike Boolean logic) is algorithmically undecidable.
 - This means that there is theoretically no algorithm for solving it, even without any time constraints.
- This motivates studying **decidable fragments** of predicate logic, where we restrict its expressivity in order to gain decidability.
 - Toy example: predicate logic with only unary predicates.

Decidable Fragments

 More interesting examples include description logics used in formal ontologies (used in OWL, SNOMED CT etc).

Decidable Fragments

- More interesting examples include description logics used in formal ontologies (used in OWL, SNOMED CT etc).
- These systems are between propositional and predicate logics and are used in knowledge representation.

Decidable Fragments

- More interesting examples include description logics used in formal ontologies (used in OWL, SNOMED CT etc).
- These systems are between propositional and predicate logics and are used in knowledge representation.
- Knowledge bases extend relational databases by a richer, logically enhanced language of queries. (This requires, obviously, fast algorithms.)