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Satisfiability

• We continue discussing satisfiability of
Boolean formula.

• A satisfying assignment is an assignment of
0’s and 1’s to variables, which makes the
formula true (value = 1).

• Satisfiability is a model example of a very
general situation of finding (more
precisely: checking for existence) an object
with given properties.
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Resolution Method
• Recall that resolution method is a method
of determining whether a Boolean formula
given in CNF is satisfiable.

• A CNF is a conjunction of clauses, where
each clause is a disjunction of literals (e.g.,
𝑥 ∨ 𝑦 ∨ 𝑧).

• The algorithm saturates the CNF by adding
all clauses which can be generated by the
resolution rule:

𝐴 ∨ 𝑝 𝐵 ∨ 𝑝
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Resolution Method

• If the empty clause (⊥) got obtained, the
CNF is not satisfiable (because the
resolution rule keeps validity).

• Moreover, by completeness theorem this is
a criterion: if the empty clause is not
obtained, the CNF is satisfiable.
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Resolution Method
• However, the non-derivability of the empty
clause does not give us the satisfying
assignment itself.

• In other words, the method solves the
decision problems (“yes”/“no”), but not the
search problem.

• If we are lucky enough, and the CNF has
only one satisfying assignment, then after
saturation we get isolated literals (like 𝑥 or
𝑦, for example), which dictate the desired
satisfying assignment (e.g., 𝑥 = 1 or 𝑦 = 0).
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Resolution Method

• In other cases, we can use the following
consideration.

Proposition
If a saturated CNF 𝒮 includes neither ⊥ nor 𝑥
as an isolated literal, then 𝒮 ∧ 𝑥 is also
satisfiable. Same for swapping 𝑥 and 𝑥.

• In particular, if 𝒮 is satisfiable and includes
neither 𝑥 nor 𝑥, we can make an arbitrary
choice for the value of 𝑥.
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Resolution Method

• However, after making this arbitrary choice,
we have to saturate 𝒮 ∧ 𝑥 (or 𝒮 ∧ 𝑥) again
before considering another variable.

• For example, the CNF (𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑧) is
saturated, but choosing 𝑥 = 0 (adding 𝑥)
allows new resolutions giving 𝑦 and 𝑧, and
thus dictating values for all other variables.
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• The proof of the proposition is easy.
• Indeed, new resolutions applied when we
saturate 𝒮 ∧ 𝑥, should involve 𝑥.

• Therefore, if such a resolution generates ⊥,
there should have been 𝑥 in the original 𝒮.
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Resolution for 2-CNF
• If clauses include at least 3 literals,
resolution can lead to growth:

𝑥 ∨ 𝑦 ∨ 𝑝 𝑧 ∨ 𝑤 ∨ 𝑝
𝑥 ∨ 𝑦 ∨ 𝑧 ∨ 𝑤

• This makes saturation a potentially
exponential procedure.

• However, for 2-CNF (each clause includes
no more than 2 literals) the clauses do not
grow:

𝑥 ∨ 𝑝 𝑧 ∨ 𝑝
𝑥 ∨ 𝑧
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Resolution for 2-CNF
• Thus, the total number of possible clauses
does not exceed 4𝑛2 + 2𝑛 + 1, where 𝑛 is
the number of variables.

• This makes the saturation process
polynomial.

• This can be organized as follows: take each
clause from the list, starting from the
second one, and try to resolve it against
eariler ones. Does it give a new clause?

• New clauses are added to the bottom of
the list.
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Home Assignment # 1

• Satisfiability for 2-CNF will be your task for
HW # 1.

• The easy version is to check satisfiability
(using resolution method).

• The full task is to check satisfiability and, if
the answer is “yes,” to return one of the
satisfying assignments.



Home Assignment # 1
• It is important to keep in mind that the
input is given in human-readable form, as
a string representing the formula.

• The program (in Python) should implement
two functions:
1. is_satisfiable, which takes a CNF and
answers True or False, depending on
whether it is satisfiable.

2. sat_assignment, which takes a CNF and
returns a satisfying assignment as an
associative array:
{ 'x': True, 'y': False, 'z': True }
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Home Assignment # 1

• Conjunction, disjunction, negation, and
implication, are, resp., /\, \/, ~, ->.

• Literals: x or ~x, where x is an arbitrary
letter.

• Clauses: (𝐿1 \/ 𝐿2) or (𝐿1 -> 𝐿2), where
𝐿1 and 𝐿2 are literals.

• The CNF is a conjunction (/\) of clauses.
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HW # 1: Practice in Boolean Logic

• First, one needs to translate the input into
a machine-digestable form (this is called
parsing of the input).

• Grammar for CNFs:
CNF ::= Clause | CNF /\ Clause

Clause ::= (Lit \/ Lit) | (Lit -> Lit)

Lit ::= Var | ~Var

• We shall use specialized software, PLY
(Python Lex & Yacc), in order to automatize
the parsing process.
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The Parsing Workflow

Lexical
Analyzer

input
(symbols)

stream of
tokens

Syntax Analyzer
(Parser)

recursive
structure



Lexical Analysis

• Input (stream of symbols):
int main(void)
{

printf("Hello, World!\n");
}

• Output (stream of tokens):

KW_INT IDENT(‘main’) ‘(’ KW_VOID ...

• Tokens are much more convenient to work
with (in the grammar).
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Running Example: Simplifying Polynomials
• We consider the following task: translating
polynomials into normal form.

(2𝑥 + 2)(3𝑥2 − 1) + 2𝑥 = 6𝑥3 + 6𝑥 − 2

• Grammar:
Expr ::= Tm | -Tm | Expr + Tm | Expr - Tm
Tm ::= Mon | (Expr) | Tm (Expr)
Mon ::= Int_opt 'x' Pow_opt | INT
Int_opt ::= INT | 𝜀
Pow_opt ::= '^' INT | 𝜀

• Input example:
(2x+2)(3x^2-1)+2x
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• YACC = Yet Another Compiler Compiler
• In Python, we use PLY (Python Lex & Yacc).
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PLY Code for Lexical Analysis
• Declare tokens and literals (one-symbol
tokens):
tokens = [ 'INT' ]
literals = ['+','-','(',')','^','x']

• For each token, declare a “t_”-function:
def t_INT(t):

r'\d+'
try:

t.value = int(t.value)
except ValueError:

print "Too large!", t.value
t.value = 0

return t
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PLY Code for Lexical Analysis

• r'\d+' is a regular expression for
sequences of decimal numbers.

• Another example: regular expression for
names (identifiers)
t_NAME = r'[a-zA-Z_][a-zA-Z0-9_]*'

• Finally, build the lexer:
import ply.lex as lex
lex.lex()
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PLY Code for Parsing
• Each rule of the grammar is implemented
as a “p_”-function:
def polymult(p,q) :

r = []
for i in xrange(len(p)) :

for j in xrange(len(q)) :
safeadd(r,i+j,p[i]*q[j])

return r

…
def p_tm_mult(p):

"tm : tm '(' expr ')'"
p[0] = polymult(p[1],p[3])
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• A “p_”-function generates an object p[0],
using p[1], p[2], …, which are obtained
from the lexer or recursively from parsing.
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• Finally, build the parser:
import ply.yacc as yacc
yacc.yacc()

• The code of PLY examples is available on
the course’s webpage:
https://homepage.mi-ras.ru/~sk/lehre/dm_hse/

• For priorities of operations, see another
example available on the webpage:
calculator.

https://homepage.mi-ras.ru/~sk/lehre/dm_hse/
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Good luck!



Resolution: Completeness Proof
Theorem
If one cannot obtain the empty clause by
applying resolutions, starting from the given
CNF, then the CNF is satisfiable.

• We prove this theorem using induction on
the number of variables.

• That is, we establish it for zero variables
(trivial) and then validate the step from 𝑛
to 𝑛 + 1 variables.
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Resolution: Completeness Proof

• Zero variables: the only possible clause is
⊥, therefore, our CNF is empty.

• From 𝑛 to 𝑛 + 1. Let the extra variable be
𝑝𝑛+1 = 𝑞 and let 𝒮 denote the saturation of
our CNF.

• Take all clauses which do not include 𝑞,
and remove 𝑞 out of them. This gives 𝒮+.

• Dually, take clauses without 𝑞 and remove
𝑞. This gives 𝒮−.
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Resolution: Completeness Proof
• Both 𝒮+ and 𝒮− are saturated.

• Indeed, any new resolution in 𝒮+ or in 𝒮−

would induce a resolution in 𝒮.
• Let us show that at least one of 𝒮+ and 𝒮−

is satisfiable.

• Suppose, both 𝒮+ and 𝒮− include ⊥.
• Then 𝒮 includes both 𝑞 and 𝑞, and therefore

⊥. Contradiction.
• Since 𝒮+ and 𝒮− use only 𝑝1, … , 𝑝𝑛, we
already know our theorem for them.

• The one which does not include ⊥ is
satisfiable.
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Resolution: Completeness Proof

• If 𝒮+ is satisfiable, take the satisfying
assignment and let 𝑞 = 0.

• Clauses without 𝑞 are already satisfied via
𝒮+.

• Clauses with 𝑞 are satisfied by 𝑞 = 1.
• Dually, if 𝒮− is satisfiable, take 𝑞 = 1.
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Beyond Propositional: Predicate Logic

• Of course, Boolean (propositional) logic is
too weak for many situations.

• In order to allow richer expressive
capabilities, more powerful logical
languages were introduced.

• One of those is first-order predicate logic,
which is usually used to formalize
mathematics.
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Predicate Logic

• In predicate logic, we have individual
variables which range over a domain.

• Atomic formulae are of the form
𝑃(𝑥, 𝑦, 𝑧, …), where 𝑃 is a predicate
symbol.

• E.g., a two-argument 𝑃 denotes a binary
relation (say, 𝑥 < 𝑦, written as < (𝑥, 𝑦)).‘

• Besides propositional operations (→, ∨, ∧,
¬), there are quantifiers ∀ (forall) and
∃ (exists).
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Predicate Logic: Example

∀𝑥∀𝑦(𝑅(𝑥, 𝑦) → ∃𝑧(𝑅(𝑥, 𝑧) ∧ 𝑅(𝑧, 𝑦)))

• This formula expresses the density of the
order.

• Its truth depends on the interpretation:
e.g., it is true on ℚ (rational numbers), but
false on ℤ (integers).

• So, it is satisfiable, but not universally true.

• Again, universal truth and satisfiability are
dual.
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Algorithmic Issues
• Unfortunately, satisfiability in predicate
logic (unlike Boolean logic) is
algorithmically undecidable.

• This means that there is theoretically no
algorithm for solving it, even without any time
constraints.

• This motivates studying decidable
fragments of predicate logic, where we
restrict its expressivity in order to gain
decidability.

• Toy example: predicate logic with only unary
predicates.
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Decidable Fragments

• More interesting examples include
description logics used in formal
ontologies (used in OWL, SNOMED CT etc).

• These systems are between propositional
and predicate logics and are used in
knowledge representation.

• Knowledge bases extend relational
databases by a richer, logically enhanced
language of queries. (This requires,
obviously, fast algorithms.)
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