HW #1: Resolution Method
and Parsing

Stepan Kuznetsov

Discrete Math Bridging Course, HSE University

Satisfiability

- We continue discussing satisfiability of
Boolean formula.

Satisfiability

- We continue discussing satisfiability of
Boolean formula.

- A satisfying assignment is an assignment of
0’s and 1's to variables, which makes the
formula true (value = 1).

Satisfiability

- We continue discussing satisfiability of
Boolean formula.

- A satisfying assignment is an assignment of
0’s and 1's to variables, which makes the
formula true (value = 1).

- Satisfiability is a model example of a very
general situation of finding (more
precisely: checking for existence) an object
with given properties.

Resolution Method

- Recall that resolution method is a method
of determining whether a Boolean formula
given in CNF is satisfiable.

Resolution Method

- Recall that resolution method is a method
of determining whether a Boolean formula
given in CNF is satisfiable.

- A CNF is a conjunction of clauses, where
each clause is a disjunction of literals (e.g,,
ZVyVZz).

Resolution Method

- Recall that resolution method is a method
of determining whether a Boolean formula
given in CNF is satisfiable.

- A CNF is a conjunction of clauses, where
each clause is a disjunction of literals (e.g,,
ZVyVZz).

- The algorithm saturates the CNF by adding
all clauses which can be generated by the
resolution rule:

AVp BVD
AV B

Resolution Method

- If the empty clause (L) got obtained, the
CNF is not satisfiable (because the
resolution rule keeps validity).

Resolution Method

- If the empty clause (L) got obtained, the
CNF is not satisfiable (because the
resolution rule keeps validity).

- Moreover, by completeness theorem this is
a criterion: if the empty clause is not
obtained, the CNF is satisfiable.

Resolution Method

- However, the non-derivability of the empty
clause does not give us the satisfying
assignment itself.

Resolution Method

- However, the non-derivability of the empty
clause does not give us the satisfying
assignment itself.

- In other words, the method solves the
decision problems (“yes”/“no”), but not the
search problem.

Resolution Method

- However, the non-derivability of the empty
clause does not give us the satisfying
assignment itself.

- In other words, the method solves the
decision problems (“yes”/“no”), but not the
search problem.

- If we are lucky enough, and the CNF has
only one satisfying assignment, then after
saturation we get isolated literals (like x or
vy, for example), which dictate the desired
satisfying assignment (e.g, z =1 or y = 0).

Resolution Method

- In other cases, we can use the following
consideration.

Resolution Method

- In other cases, we can use the following
consideration.
Proposition
If a saturated CNF 8 includes neither 1 norx
as an isolated literal, then § A x is also
satisfiable. Same for swapping x and .

Resolution Method

- In other cases, we can use the following
consideration.

Proposition
If a saturated CNF S includes neither L nor T

as an isolated literal, then § A x is also
satisfiable. Same for swapping x and .

- In particular, if § Is satisfiable and includes
neither x nor z, we can make an arbitrary
choice for the value of z.

Resolution Method

- However, after making this arbitrary choice,
we have to saturate § A z (or § A Z) again
before considering another variable.

Resolution Method

- However, after making this arbitrary choice,
we have to saturate § A z (or § A Z) again
before considering another variable.

- For example, the CNF (z V) A (z V 2) IS
saturated, but choosing z = 0 (adding z)
allows new resolutions giving y and z, and
thus dictating values for all other variables.

Resolution Method

Proposition

If a saturated CNF 8 includes neither 1 norx
as an isolated literal, then § A x is also
satisfiable. Same for swapping x and .

Resolution Method

Proposition

If a saturated CNF 8 includes neither 1 norx
as an isolated literal, then § A x is also
satisfiable. Same for swapping x and .

- The proof of the proposition is easy.

Resolution Method

Proposition

If a saturated CNF 8 includes neither 1 norx
as an isolated literal, then § A x is also
satisfiable. Same for swapping x and .

- The proof of the proposition is easy.

- Indeed, new resolutions applied when we
saturate § A z, should involve z.

Resolution Method

Proposition

If a saturated CNF 8 includes neither 1 norx
as an isolated literal, then § A x is also
satisfiable. Same for swapping x and .

- The proof of the proposition is easy.

- Indeed, new resolutions applied when we
saturate § A z, should involve z.

- Therefore, if such a resolution generates L,
there should have been = in the original S.

Example

(pVvrvs),TVeq,EVDPVz2),ZVt),p

Example
(PVrvs),(TVae),(sVDpV2), (ZVi),p

(rvs),(s5Vz),pVsVvq),pVvrVvz),sSVpVi),

Example
(PVrvs),(TVae),(sVDpV2), (ZVi),p

(rvs),(s5Vz),pVsVvq),pVvrVvz),sSVpVi),
(rvz),dVqVz),(sVq),E5Vt),(rvpVit),

Example
(PVrvs),(TVae),(sVDpV2), (ZVi),p
(rvs),(sVz),(pVsVag),PVrVvz),(svVpVi),

(rvz),dVqVz),(sVq),E5Vt),(rvpVit),
(qVi),(2Vaq),(rvit)

Example
(PVrvs),(TVae),(sVDpV2), (ZVi),p
(rvs),(sVz),(pVsVag),PVrVvz),(svVpVi),

(rvz),dVqVz),(sVq),E5Vt),(rvpVit),
(qVi),(2Vaq),(rvit)

Example
(PVrvs),(TVae),(sVDpV2), (ZVi),p
(rvs),(sVz),(pVsVag),PVrVvz),(svVpVi),

(rvz),dVqVz),(sVq),E5Vt),(rvpVit),
(qVi),(2Vaq),(rvit)

Example
(PVrvs),(TVae),(sVDpV2), (ZVi),p

(rvs),(s5Vz),pVsVvq),pVvrVvz),sSVpVi),
(rvz),dVqVz),(sVq),E5Vt),(rvpVit),

(qVit),(z2Vq),(rvt)

s,2,t,(PV 2),(p Vi)

Resolution for 2-CNF

- If clauses include at least 3 literals,
resolution can lead to growth:

cVyVp zVwVDp
rVyVzVuw

Resolution for 2-CNF

- If clauses include at least 3 literals,
resolution can lead to growth:

cVyVp zVwVDp
rVyVzVuw

- This makes saturation a potentially
exponential procedure.

Resolution for 2-CNF

- If clauses include at least 3 literals,
resolution can lead to growth:

cVyVp zVwVDp
rVyVzVuw

- This makes saturation a potentially
exponential procedure.
- However, for 2-CNF (each clause includes

no more than 2 literals) the clauses do not
grow:
Vp

Tz Vp
T

IR

V

Resolution for 2-CNF

- Thus, the total number of possible clauses
does not exceed 4n? + 2n + 1, where n is
the number of variables.

Resolution for 2-CNF

- Thus, the total number of possible clauses
does not exceed 4n? + 2n + 1, where n is
the number of variables.

- This makes the saturation process
polynomial.

Resolution for 2-CNF

- Thus, the total number of possible clauses
does not exceed 4n? + 2n + 1, where n is
the number of variables.

- This makes the saturation process
polynomial.

- This can be organized as follows: take each
clause from the list, starting from the
second one, and try to resolve it against
eariler ones. Does it give a new clause?

Resolution for 2-CNF

- Thus, the total number of possible clauses
does not exceed 4n? + 2n + 1, where n is
the number of variables.

- This makes the saturation process
polynomial.

- This can be organized as follows: take each
clause from the list, starting from the
second one, and try to resolve it against
eariler ones. Does it give a new clause?

- New clauses are added to the bottom of
the list.

Home Assignment # 1

- Satisfiability for 2-CNF will be your task for
HW #1.

- The easy version is to check satisfiability
(using resolution method).

- The full task is to check satisfiability and, if
the answer Is “yes,” to return one of the
satisfying assignments.

Home Assignment # 1

- It is important to keep in mind that the
input is given in human-readable form, as
a string representing the formula.

Home Assignment # 1

- It is important to keep in mind that the
input is given in human-readable form, as

a string representing the formula.
- The program (in Python) should implement
two functions:

1. 1s_satisfiable, which takes a CNF and
answers True or False, depending on
whether it is satisfiable.

2. sat_assignment, which takes a CNF and
returns a satisfying assignment as an
associative array:

{ 'x': True, 'y': False, 'z': True }

Home Assignment # 1

- Conjunction, disjunction, negation, and
implication, are, resp., /\, \/, ~, ->.

Home Assignment # 1

- Conjunction, disjunction, negation, and
implication, are, resp., /\, \/, ~, ->.

- Literals: x or ~x, where x is an arbitrary
letter.

Home Assignment # 1

- Conjunction, disjunction, negation, and
implication, are, resp., /\, \/, ~, ->.

- Literals: x or ~x, where x is an arbitrary
letter.

+ Clauses: (Ly \/ Ly) or (L, -> L,), where
L, and L, are literals.

Home Assignment # 1

- Conjunction, disjunction, negation, and
implication, are, resp., /\, \/, ~, ->.

- Literals: x or ~x, where x is an arbitrary
letter.

+ Clauses: (Ly \/ Ly) or (L, -> L,), where
L, and L, are literals.

- The CNF is a conjunction (/\) of clauses.

HW # 1: Practice in Boolean Logic

- First, one needs to translate the input into
a machine-digestable form (this is called
parsing of the input).

HW # 1: Practice in Boolean Logic

- First, one needs to translate the input into
a machine-digestable form (this is called
parsing of the input).

- Grammar for CNFs:

CNF ::= Clause | CNF /\ Clause
Clause ::= (Lit \/ Lit) | (Lit -> Lit)
Lit ::= var | ~Var

HW # 1: Practice in Boolean Logic

- First, one needs to translate the input into
a machine-digestable form (this is called
parsing of the input).

- Grammar for CNFs:

CNF ::= Clause | CNF /\ Clause
Clause ::= (Lit \/ Lit) | (Lit -> Lit)
Lit ::= Var | ~Var

- We shall use specialized software, PLY
(Python Lex & Yacc), in order to automatize
the parsing process.

The Parsing Workflow

input
(symbols)

Syntax Analyzer
(Parser)

Lexical
Analyzer

T

stream of
tokens

recursive
structure

Lexical Analysis

- Input (stream of symbols):

int main(void)

{
}

printf("Hello, World!\n");

Lexical Analysis

- Input (stream of symbols):

int main(void)

{
}

- Output (stream of tokens):

printf("Hello, World!\n");

Lexical Analysis

- Input (stream of symbols):

int main(void)

{
}

- Output (stream of tokens):
KW_INT

printf("Hello, World!\n");

Lexical Analysis

- Input (stream of symbols):

int main(void)

{
}

- Output (stream of tokens):
KW_INT IDENT(‘main’)

printf("Hello, World!\n");

Lexical Analysis

- Input (stream of symbols):

int main(void)

{
}

- Output (stream of tokens):
KW_INT IDENT(main) ‘('

printf("Hello, World!\n");

Lexical Analysis

- Input (stream of symbols):

int main(void)

{
}

- Output (stream of tokens):
KW_INT IDENT(‘main’) ‘v Kw_VOID

printf("Hello, World!\n");

Lexical Analysis

- Input (stream of symbols):

int main(void)

{
}

- Output (stream of tokens):
KW_INT IDENT(‘main’) ‘v Kw_VOID

printf("Hello, World!\n");

Lexical Analysis

- Input (stream of symbols):

int main(void)

{
printf("Hello, World!\n");
}
- Output (stream of tokens):
KW_INT IDENT(‘main’) ‘v Kw_VOID

- Tokens are much more convenient to work
with (in the grammar).

Running Example: Simplifying Polynomials

- We consider the following task: translating
polynomials into normal form.

Running Example: Simplifying Polynomials

- We consider the following task: translating
polynomials into normal form.

(22 +2)(32%2 — 1) + 22 = 623 + 62 — 2

Running Example: Simplifying Polynomials

- We consider the following task: translating
polynomials into normal form.

(22 +2)(32%2 — 1) + 22 = 623 + 62 — 2

- Grammar:
Expr = Tm | -Tm | Expr + Tm | Expr - Tm
m = Mon | (Expr) | Tm (Expr)
Mon = Int_opt 'x' Pow_opt | INT
Int_opt ::= INT | ¢
Pow_opt ::= '"" INT | ¢

Running Example: Simplifying Polynomials

- We consider the following task: translating
polynomials into normal form.

(22 +2)(32%2 — 1) + 22 = 623 + 62 — 2

- Grammar:
Expr = Tm | -Tm | Expr + Tm | Expr - Tm
m = Mon | (Expr) | Tm (Expr)
Mon = Int_opt 'x' Pow_opt | INT
Int_opt ::= INT | ¢
Pow_opt ::= '"" INT | ¢

- Input example:
(2x+2)(3x"2-1)+2x

Implementation: Lex & Yacc

input
(symbols)

Syntax Analyzer _
recursive
(Parser)

VACC structure

Lexical
Analyzer
Lex

[

stream of
tokens

Implementation: Lex & Yacc

Syntax Analyzer _
recursive
(Parser)

VACC structure

. Lexical
Input Anal
(symbols) atyzel
Lex

[

stream of
tokens

- YACC = Yet Another Compiler Compiler

Implementation: Lex & Yacc

Syntax Analyzer _
recursive
(Parser)

VACC structure

. Lexical
Input Anal
(symbols) atyzel
Lex

[

stream of
tokens

- YACC = Yet Another Compiler Compiler

Implementation: Lex & Yacc

input
(symbols)

- YACC = Yet Another Compiler Compiler

Syntax Analyzer

(Parser)
YACC

Lexical
Analyzer
Lex

[

stream of
tokens

recursive

structure

- In Python, we use PLY (Python Lex & Yacc).

PLY Code for Lexical Analysis

- Declare tokens and literals (one-symbol

tokens):

tokens = ["INT']
literals = ['+',"'-","'(',")",'"",'x"]

PLY Code for Lexical Analysis

- Declare tokens and literals (one-symbol

tokens):
tokens = ["INT']
'Literals: [|+|'|_|'|(|’| "'A',IXI

- For each token, declare a “t_"-function:

def t_INT(t):

r'\d+"

try:
t.value = int(t.value)

except ValueError:
print "Too large!", t.value
t.value = 0

return t

PLY Code for Lexical Analysis

- r'\d+"' is a regular expression for
sequences of decimal numbers.

PLY Code for Lexical Analysis

- r'\d+"' is a regular expression for
sequences of decimal numbers.

- Another example: regular expression for
names (identifiers)
t_NAME = r'[a-zA-Z_1[a-zA-Z0-9_]+"

PLY Code for Lexical Analysis

- r'\d+"' is a regular expression for
sequences of decimal numbers.

- Another example: regular expression for
names (identifiers)

t_NAME = r'[a-zA-Z_][a-zA-Z0-9_]+'

- Finally, build the lexer:

import ply.lex as lex
lex.lex()

PLY Code for Parsing

- Each rule of the grammar is implemented
as a “p_"-function:

def polymult(p,q) :
r = []
for i in xrange(len(p)) :
for j in xrange(len(q)) :
safeadd(r,i+j,pli]*ql[3j])
return r

def p_tm_mult(p):
"tm : tm '(' expr ')'"
p[@] = polymult(p[1],p[3])

PLY Code for Parsing

def p_tm_mult(p):
"tm : tm '(' expr ')'"
p[0] = polymult(p[1],p[3])

PLY Code for Parsing

def p_tm_mult(p):
"tm : tm '(' expr ')'"
p[0] = polymult(p[1],p[3])

- A “p_"-function generates an object p[0],
using p[11], p[2], .., which are obtained
from the lexer or recursively from parsing.

PLY Code for Parsing

- Finally, build the parser:

import ply.yacc as yacc
yacc.yacc()

https://homepage.mi-ras.ru/~sk/lehre/dm_hse/

PLY Code for Parsing

- Finally, build the parser:
import ply.yacc as yacc
yacc.yacc()

- The code of PLY examples is available on

the course’s webpage:
https://homepage.mi-ras.ru/~sk/lehre/dm_hse/

https://homepage.mi-ras.ru/~sk/lehre/dm_hse/

PLY Code for Parsing

- Finally, build the parser:

import ply.yacc as yacc
yacc.yacc()

- The code of PLY examples is available on
the course’s webpage:
https://homepage.mi-ras.ru/~sk/lehre/dm_hse/

- For priorities of operations, see another
example available on the webpage:
calculator.

https://homepage.mi-ras.ru/~sk/lehre/dm_hse/

Good luck!

Resolution: Completeness Proof

Theorem

If one cannot obtain the empty clause by
applying resolutions, starting from the given
CNF, then the CNF is satisfiable.

Resolution: Completeness Proof

Theorem

If one cannot obtain the empty clause by
applying resolutions, starting from the given
CNF, then the CNF is satisfiable.

- We prove this theorem using induction on
the number of variables.

Resolution: Completeness Proof

Theorem

If one cannot obtain the empty clause by
applying resolutions, starting from the given
CNF, then the CNF is satisfiable.

- We prove this theorem using induction on
the number of variables.

- That is, we establish it for zero variables
(trivial) and then validate the step from n
to n + 1 variables.

Resolution: Completeness Proof

- Zero variables: the only possible clause is
1, therefore, our CNF is empty.

Resolution: Completeness Proof

- Zero variables: the only possible clause is
1, therefore, our CNF is empty.

- From n to n + 1. Let the extra variable be
Pny1 = ¢ and let § denote the saturation of
our CNF.

Resolution: Completeness Proof

- Zero variables: the only possible clause is
1, therefore, our CNF is empty.

- From n to n + 1. Let the extra variable be
Pny1 = ¢ and let § denote the saturation of
our CNF.

- Take all clauses which do not include g,
and remove ¢ out of them. This gives S.

Resolution: Completeness Proof

- Zero variables: the only possible clause is
1, therefore, our CNF is empty.

- From n to n + 1. Let the extra variable be
Pny1 = ¢ and let § denote the saturation of
our CNF.

- Take all clauses which do not include g,
and remove ¢ out of them. This gives S.

- Dually, take clauses without ¢ and remove
q. This gives §—.

Resolution: Completeness Proof

- Both 8™ and & are saturated.

Resolution: Completeness Proof

- Both 8™ and & are saturated.

- Indeed, any new resolution in 8T orin &~
would induce a resolution in 8.

Resolution: Completeness Proof

- Both 8™ and & are saturated.
- Indeed, any new resolution in 8T orin &~
would induce a resolution in 8.

- Let us show that at least one of §™ and §—
Is satisfiable.

Resolution: Completeness Proof

- Both §* and &~ are saturated.
- Indeed, any new resolution in 8T orin 8~
would induce a resolution in 8.
- Let us show that at least one of " and §—
Is satisfiable.
- Suppose, both §T and & include L.

Resolution: Completeness Proof

- Both 8" and 8§~ are saturated.
- Indeed, any new resolution in 8T orin 8~
would induce a resolution in 8.
- Let us show that at least one of $* and §—
Is satisfiable.

- Suppose, both §T and & include L.
- Then 8 includes both ¢ and g, and therefore
L. Contradiction.

Resolution: Completeness Proof

- Both 8™ and & are saturated.

- Indeed, any new resolution in 8T orin &~
would induce a resolution in 8.

- Let us show that at least one of §™ and §—
Is satisfiable.

- Suppose, both §T and & include L.

- Then 8 includes both ¢ and g, and therefore
L. Contradiction.

- Since 8T and &~ use only py, ..., p,,, We
already know our theorem for them.

Resolution: Completeness Proof

- Both 8™ and & are saturated.

- Indeed, any new resolution in 8T orin &~
would induce a resolution in 8.

- Let us show that at least one of " and §—
Is satisfiable.

- Suppose, both §T and & include L.

- Then 8 includes both ¢ and g, and therefore
L. Contradiction.

- Since 8T and &~ use only pq, ..., p,,, W€
already know our theorem for them.

- The one which does not include L is
satisfiable.

Resolution: Completeness Proof

- If 8T is satisfiable, take the satisfying
assignment and let ¢ = 0.

Resolution: Completeness Proof

- If 8T is satisfiable, take the satisfying
assignment and let ¢ = 0.

- Clauses without g are already satisfied via
ST,

Resolution: Completeness Proof

- If 8T is satisfiable, take the satisfying
assignment and let ¢ = 0.

- Clauses without g are already satisfied via
ST,

- Clauses with g are satisfied by g = 1.

Resolution: Completeness Proof

- If 8T is satisfiable, take the satisfying
assignment and let ¢ = 0.

- Clauses without g are already satisfied via
ST,

- Clauses with g are satisfied by g = 1.

- Dually, if §~ is satisfiable, take ¢ = 1.

Beyond Propositional: Predicate Logic

- Of course, Boolean (propositional) logic is
too weak for many situations.

Beyond Propositional: Predicate Logic

- Of course, Boolean (propositional) logic is
too weak for many situations.

- In order to allow richer expressive
capabilities, more powerful logical
languages were introduced.

Beyond Propositional: Predicate Logic

- Of course, Boolean (propositional) logic is
too weak for many situations.

- In order to allow richer expressive
capabilities, more powerful logical
languages were introduced.

- One of those is first-order predicate logic,
which is usually used to formalize
mathematics.

Predicate Logic

- In predicate logic, we have individual
variables which range over a domain.

Predicate Logic

- In predicate logic, we have individual
variables which range over a domain.

- Atomic formulae are of the form
P(z,y,z,...), where P is a predicate
symbol.

Predicate Logic

- In predicate logic, we have individual
variables which range over a domain.

- Atomic formulae are of the form
P(z,y,z,...), where P is a predicate
symbol.

- E.g, atwo-argument P denotes a binary
relation (say, z < y, written as < (z,y)).

Predicate Logic

- In predicate logic, we have individual
variables which range over a domain.

- Atomic formulae are of the form
P(z,y,z,...), where P is a predicate
symbol.

- E.g, atwo-argument P denotes a binary
relation (say, z < y, written as < (z,y)).

- Besides propositional operations (—, V, A,
—), there are quantifiers V (forall) and
3 (exists).

Predicate Logic: Example

VaVy(R(z,y) — 32(R(x,2z) A R(2,y)))

Predicate Logic: Example

Vavy(z <y — 3z(z < zAz<y))

Predicate Logic: Example

Vavy(z <y — 3z(z < zAz<y))

- This formula expresses the density of the
order.

Predicate Logic: Example

VaVy(z <y — Jz(z < 2 Az < y))

- This formula expresses the density of the
order.

- Its truth depends on the interpretation:
e.g., itistrue on Q (rational numbers), but
false on Z (integers).

Predicate Logic: Example

VaVy(z <y — Jz(z < 2 Az < y))

- This formula expresses the density of the
order.

- Its truth depends on the interpretation:
e.g., itistrue on Q (rational numbers), but

false on Z (integers).
- So, it is satisfiable, but not universally true.

Predicate Logic: Example

VaVy(z <y — Jz(z < 2 Az < y))

- This formula expresses the density of the
order.

- Its truth depends on the interpretation:
e.g., itistrue on Q (rational numbers), but
false on Z (integers).

- So, it is satisfiable, but not universally true.

- Again, universal truth and satisfiability are
dual.

Algorithmic Issues

- Unfortunately, satisfiability in predicate
logic (unlike Boolean logic) is
algorithmically undecidable.

Algorithmic Issues

- Unfortunately, satisfiability in predicate
logic (unlike Boolean logic) is
algorithmically undecidable.

- This means that there is theoretically no
algorithm for solving it, even without any time
constraints.

Algorithmic Issues

- Unfortunately, satisfiability in predicate
logic (unlike Boolean logic) is
algorithmically undecidable.

- This means that there is theoretically no
algorithm for solving it, even without any time
constraints.

- This motivates studying decidable
fragments of predicate logic, where we
restrict its expressivity in order to gain
decidability.

Algorithmic Issues

- Unfortunately, satisfiability in predicate
logic (unlike Boolean logic) is
algorithmically undecidable.

- This means that there is theoretically no
algorithm for solving it, even without any time
constraints.

- This motivates studying decidable
fragments of predicate logic, where we
restrict its expressivity in order to gain
decidability.

- Toy example: predicate logic with only unary
predicates.

Decidable Fragments

- More interesting examples include
description logics used in formal
ontologies (used in OWL, SNOMED CT etc).

Decidable Fragments

- More interesting examples include
description logics used in formal
ontologies (used in OWL, SNOMED CT etc).

- These systems are between propositional

and predicate logics and are used In
knowledge representation.

Decidable Fragments

- More interesting examples include
description logics used in formal
ontologies (used in OWL, SNOMED CT etc).

- These systems are between propositional
and predicate logics and are used In
knowledge representation.

- Knowledge bases extend relational
databases by a richer, logically enhanced
language of queries. (This requires,
obviously, fast algorithms.)

