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The P Class
• Now we discuss only decision problems:
that is, algorithmic questions with a
“yes/no” answer.

• For convenience, let the input data be a
word over an alphabet: 𝑥 ∈ Σ∗.

• The size of input, |𝑥| is the length of 𝑥 in
symbols.

• A decision problem is in the P class, if
there exists an algorithm for solving it,
whose worst case running time is bounded
by 𝑝(|𝑥|).
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The NP Class
• There are several equivalent definitions of
the NP class.

• Def. 1: non-deterministic computations.

• The computation process may branch: at
some point of execution, there could be more
than one (but a finite number of) possibilities
to perform the next step.

• Angelic choice: if at least one execution
trajectory yields “yes,” then the answer is “yes.”

• One can implement non-deterministic guess
(say, guess the satisfying assignment for a
3-CNF or guess a Hamiltonian cycle in a graph).
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The NP Class

• Def. 2: hints.

• Denote the decision problem by 𝐴(𝑥).
• 𝐴(𝑥) = 1 ⟺ ∃𝑦 (|𝑦| < 𝑞(|𝑥|) & 𝑅(𝑥, 𝑦) = 1),
where 𝑅 ∈ P.

• 𝑦 is a hint, given by someone to help us solve
the problem.

• Examples of 𝑦: the satisfying assignment; the
Hamiltonian cycle; ...
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• Equivalence of definitions:

• 2 ⇒ 1: the hint can be guessed
non-deterministically.

• 1 ⇒ 2: one can suppose that branching is
binary. Then the hint is just the sequence of
choices to be made.
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NP-Completeness
• Trivially, P ⊆ NP.

• Nobody knows, whether this inclusion is
strict: say, whether 3-SAT ∈ P.

• As an ersatz, the theory of
NP-completeness was invented.

• Informally, NP-complete problems are the
hardest possible problems in NP.

• In particular, if an NP-complete problem is
solvable in poly time, then P = NP.

• Contraposition: if P ≠ NP (which is highly
likely), then any NP-complete problem is not
in P.
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• m-reduction (Carp reduction): 𝐴 is
reducible to 𝐵 (𝐴 ≤𝑃

𝑚 𝐵), if there exists a
polytime computable function 𝑓 ∶ Σ∗ → Σ∗,
such that 𝐴(𝑥) = 1 ⟺ 𝐵(𝑓(𝑥)) = 1.

• The idea of reduction: if we can solve 𝐵, we
can also solve 𝐴: 𝐴(𝑥) = 𝐵(𝑓(𝑥)).

• A problem 𝐵 is NP-hard if 𝐴 ≤𝑃
𝑚 𝐵 for any

𝐴 ∈ NP.
• 𝐵 is NP-complete if 𝐵 ∈ NP and 𝐵 is
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Complexity Picture
(if P ≠ NP)



Backwards Reduction

• Proving that a problem is NP-complete
gives an evidence that it is hard (probably
not polytime solvable).

• The common method of proving
NP-hardness is backwards reduction.

• Suppose we know 𝐴 to be already NP-hard.
• In order to prove NP-hardness of a problem 𝐵,
we reduce the old problem 𝐴 to 𝐵.

• But how to bootstrap and obtain the first
example of an NP-complete problem?
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Cook – Levin Theorem

Theorem
SAT (satisfiability of arbitrary Boolean
formulae) NP-complete.


