P \& NP

Stepan Kuznetsov

Discrete Math Bridging Course, HSE University

The P Class

- Now we discuss only decision problems: that is, algorithmic questions with a "yes/no" answer.

The P Class

- Now we discuss only decision problems: that is, algorithmic questions with a "yes/no" answer.
- For convenience, let the input data be a word over an alphabet: $x \in \Sigma^{*}$.

The P Class

- Now we discuss only decision problems: that is, algorithmic questions with a "yes/no" answer.
- For convenience, let the input data be a word over an alphabet: $x \in \Sigma^{*}$.
- The size of input, $|x|$ is the length of x in symbols.

The P Class

- Now we discuss only decision problems: that is, algorithmic questions with a "yes/no" answer.
- For convenience, let the input data be a word over an alphabet: $x \in \Sigma^{*}$.
- The size of input, $|x|$ is the length of x in symbols.
- A decision problem is in the P class, if there exists an algorithm for solving it, whose worst case running time is bounded by $p(|x|)$.

The NP Class

- There are several equivalent definitions of the NP class.

The NP Class

- There are several equivalent definitions of the NP class.
- Def. 1: non-deterministic computations.

The NP Class

- There are several equivalent definitions of the NP class.
- Def. 1: non-deterministic computations.
- The computation process may branch: at some point of execution, there could be more than one (but a finite number of) possibilities to perform the next step.

The NP Class

- There are several equivalent definitions of the NP class.
- Def. 1: non-deterministic computations.
- The computation process may branch: at some point of execution, there could be more than one (but a finite number of) possibilities to perform the next step.
- Angelic choice: if at least one execution trajectory yields "yes," then the answer is "yes."

The NP Class

- There are several equivalent definitions of the NP class.
- Def. 1: non-deterministic computations.
- The computation process may branch: at some point of execution, there could be more than one (but a finite number of) possibilities to perform the next step.
- Angelic choice: if at least one execution trajectory yields "yes," then the answer is "yes."
- One can implement non-deterministic guess (say, guess the satisfying assignment for a 3 -CNF or guess a Hamiltonian cycle in a graph).

The NP Class

- Def. 2: hints.

The NP Class

- Def. 2: hints.
- Denote the decision problem by $A(x)$.

The NP Class

- Def. 2: hints.
- Denote the decision problem by $A(x)$.
- $A(x)=1 \Leftrightarrow \exists y(|y|<q(|x|) \& R(x, y)=1)$, where $R \in \mathrm{P}$.

The NP Class

- Def. 2: hints.
- Denote the decision problem by $A(x)$.
- $A(x)=1 \Leftrightarrow \exists y(|y|<q(|x|) \& R(x, y)=1)$, where $R \in \mathrm{P}$.
- y is a hint, given by someone to help us solve the problem.

The NP Class

- Def. 2: hints.
- Denote the decision problem by $A(x)$.
- $A(x)=1 \Leftrightarrow \exists y(|y|<q(|x|) \& R(x, y)=1)$, where $R \in \mathrm{P}$.
- y is a hint, given by someone to help us solve the problem.
- Examples of y : the satisfying assignment; the Hamiltonian cycle; ...

The NP Class

- Equivalence of definitions:

The NP Class

- Equivalence of definitions:
- $2 \Rightarrow 1$: the hint can be guessed non-deterministically.

The NP Class

- Equivalence of definitions:
- $2 \Rightarrow 1$: the hint can be guessed non-deterministically.
- $1 \Rightarrow 2$: one can suppose that branching is binary. Then the hint is just the sequence of choices to be made.

The NP Class

- Equivalence of definitions:
- $2 \Rightarrow 1$: the hint can be guessed non-deterministically.
- $1 \Rightarrow 2$: one can suppose that branching is binary. Then the hint is just the sequence of choices to be made.

NP-Completeness

- Trivially, $P \subseteq N P$.

NP-Completeness

- Trivially, P \subseteq NP.
- Nobody knows, whether this inclusion is strict: say, whether 3-SAT $\in P$.

NP-Completeness

- Trivially, P \subseteq NP.
- Nobody knows, whether this inclusion is strict: say, whether 3-SAT $\in P$.
- As an ersatz, the theory of NP-completeness was invented.

NP-Completeness

- Trivially, P \subseteq NP.
- Nobody knows, whether this inclusion is strict: say, whether 3-SAT $\in P$.
- As an ersatz, the theory of NP-completeness was invented.
- Informally, NP-complete problems are the hardest possible problems in NP.

NP-Completeness

- Trivially, P \subseteq NP.
- Nobody knows, whether this inclusion is strict: say, whether $3-$ SAT $\in P$.
- As an ersatz, the theory of NP-completeness was invented.
- Informally, NP-complete problems are the hardest possible problems in NP.
- In particular, if an NP-complete problem is solvable in poly time, then $P=N P$.

NP-Completeness

- Trivially, P \subseteq NP.
- Nobody knows, whether this inclusion is strict: say, whether 3-SAT $\in P$.
- As an ersatz, the theory of NP-completeness was invented.
- Informally, NP-complete problems are the hardest possible problems in NP.
- In particular, if an NP-complete problem is solvable in poly time, then $P=N P$.
- Contraposition: if $P \neq N P$ (which is highly likely), then any NP-complete problem is not in P.

NP-Completeness

- m-reduction (Carp reduction): A is
reducible to $B\left(A \leq_{m}^{P} B\right)$, if there exists a polytime computable function $f: \Sigma^{*} \rightarrow \Sigma^{*}$, such that $A(x)=1 \Leftrightarrow B(f(x))=1$.

NP-Completeness

- m-reduction (Carp reduction): A is
reducible to $B\left(A \leq_{m}^{P} B\right)$, if there exists a polytime computable function $f: \Sigma^{*} \rightarrow \Sigma^{*}$, such that $A(x)=1 \Leftrightarrow B(f(x))=1$.
- The idea of reduction: if we can solve B, we can also solve A : $A(x)=B(f(x))$.

NP-Completeness

- m-reduction (Carp reduction): A is
reducible to $B\left(A \leq_{m}^{P} B\right)$, if there exists a polytime computable function $f: \Sigma^{*} \rightarrow \Sigma^{*}$, such that $A(x)=1 \Longleftrightarrow B(f(x))=1$.
- The idea of reduction: if we can solve B, we can also solve A : $A(x)=B(f(x))$.
- A problem B is NP-hard if $A \leq_{m}^{P} B$ for any $A \in \mathrm{NP}$.

NP-Completeness

- m-reduction (Carp reduction): A is
reducible to $B\left(A \leq_{m}^{P} B\right)$, if there exists a polytime computable function $f: \Sigma^{*} \rightarrow \Sigma^{*}$, such that $A(x)=1 \Longleftrightarrow B(f(x))=1$.
- The idea of reduction: if we can solve B, we can also solve A : $A(x)=B(f(x))$.
- A problem B is NP-hard if $A \leq_{m}^{P} B$ for any $A \in \mathrm{NP}$.
- B is NP-complete if $B \in N P$ and B is NP-hard.

Complexity Picture

(if $P \neq N P$)

Backwards Reduction

- Proving that a problem is NP-complete gives an evidence that it is hard (probably not polytime solvable).

Backwards Reduction

- Proving that a problem is NP-complete gives an evidence that it is hard (probably not polytime solvable).
- The common method of proving NP-hardness is backwards reduction.

Backwards Reduction

- Proving that a problem is NP-complete gives an evidence that it is hard (probably not polytime solvable).
- The common method of proving NP-hardness is backwards reduction.
- Suppose we know A to be already NP-hard.

Backwards Reduction

- Proving that a problem is NP-complete gives an evidence that it is hard (probably not polytime solvable).
- The common method of proving NP-hardness is backwards reduction.
- Suppose we know A to be already NP-hard.
- In order to prove NP-hardness of a problem B, we reduce the old problem A to B.

Backwards Reduction

- Proving that a problem is NP-complete gives an evidence that it is hard (probably not polytime solvable).
- The common method of proving NP-hardness is backwards reduction.
- Suppose we know A to be already NP-hard.
- In order to prove NP-hardness of a problem B, we reduce the old problem A to B.
- But how to bootstrap and obtain the first example of an NP-complete problem?

Cook - Levin Theorem

Theorem
SAT (satisfiability of arbitrary Boolean formulae) NP-complete.

