
Graphs
Cook – Levin Theorem

Stepan Kuznetsov

Discrete Math Bridging Course, HSE University



The P Class
• Now we discuss only decision problems:
that is, algorithmic questions with a
“yes/no” answer.

• For convenience, let the input data be a
word over an alphabet: 𝑥 ∈ Σ∗.

• The size of input, |𝑥| is the length of 𝑥 in
symbols.

• A decision problem is in the P class, if
there exists an algorithm for solving it,
whose worst case running time is bounded
by 𝑝(|𝑥|).
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The NP Class
• There are several equivalent definitions of
the NP class.

• Def. 1: non-deterministic computations.

• The computation process may branch: at
some point of execution, there could be more
than one (but a finite number of) possibilities
to perform the next step.

• Angelic choice: if at least one execution
trajectory yields “yes,” then the answer is “yes.”

• One can implement non-deterministic guess
(say, guess the satisfying assignment for a
3-CNF or guess a Hamiltonian cycle in a graph).
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NP-Completeness

• m-reduction (Carp reduction): 𝐴 is
reducible to 𝐵 (𝐴 ≤𝑃

𝑚 𝐵), if there exists a
polytime computable function 𝑓 ∶ Σ∗ → Σ∗,
such that 𝐴(𝑥) = 1 ⟺ 𝐵(𝑓(𝑥)) = 1.

• The idea of reduction: if we can solve 𝐵, we
can also solve 𝐴: 𝐴(𝑥) = 𝐵(𝑓(𝑥)).

• A problem 𝐵 is NP-hard if 𝐴 ≤𝑃
𝑚 𝐵 for any

𝐴 ∈ NP.
• 𝐵 is NP-complete if 𝐵 ∈ NP and 𝐵 is
NP-hard.
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Cook – Levin Theorem

Theorem
SAT (satisfiability of arbitrary Boolean
formulae) NP-complete, that is, if 𝐴 ∈ NP, then
𝐴 is 𝑚-reducible to SAT.
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problem and show how it can be reduced
to SAT.

• The problem is 3-colorability of graphs.
• Let us first recall what a graph is.



Example: Graph Coloring

• Let us consider an example of an NP
problem and show how it can be reduced
to SAT.

• The problem is 3-colorability of graphs.

• Let us first recall what a graph is.



Example: Graph Coloring

• Let us consider an example of an NP
problem and show how it can be reduced
to SAT.

• The problem is 3-colorability of graphs.
• Let us first recall what a graph is.



Graphs

An undirected graph is a formed by set of
vertices, some of which are connected by edges.
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Graphs

In a directed graph, edges have arrows on them:



Loops and Parallel Edges

• Beware of two special kinds of edges in
graphs.

• Loop: a vertex connected to itself.

• Parallel edges: two vertices connected by
more than one edge.
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Loops and Parallel Edges
• By default, loops and parallel edges are
disallowed.

• A graph with parallel edges is called a
multigraph.

• A graph with parallel edges and loops is
called a pseudograph.

• Note that in a directed graph edges
connecting two vertices in different
directions are not considered parallel.
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Applications of Graphs
Maps (GIS): vertices = cities, edges = routes.

Lampman @ Wikipedia



Applications of Graphs
Chemistry: graphs of molecular structure.



Applications of Graphs
Internet: network topology.

Benjamin D. Esham @ Wikipedia



Applications of Graphs

Linguistics: syntactic dependencies.



Applications of Graphs

Zigomitros Athanasios – Thor4bp @ Wikipedia



Graph: Formal Definition
• A pseudograph can be formally defined as

𝐺 = (𝑉 , 𝐸), where 𝑉 is the set of vertices
(arbitrary finite set) and
𝐸 ⊆ 𝑉 × 𝑉 = {(𝑢, 𝑣) ∣ 𝑢, 𝑣 ∈ 𝑉 } is the set of
edges, such that (𝑢, 𝑣) ∈ 𝐸 ⟺ (𝑣, 𝑢) ∈ 𝐸.

• In other words, a pseudograph is a symmetric
binary relation on a finite set 𝑉 .

• An undirected graph is a symmetric irreflexive
relation: (𝑢, 𝑢) ∉ 𝐸 for any 𝑢.

• A directed graph is an arbitrary irreflexive
relation.

• The formal definition of multigraph is more
involved.
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Coloring

• We color vertices into colors of a set 𝐶 , and
our coloring is correct, if each edge
connects vertices of different colors.

• Formally, 𝑐 ∶ 𝑉 → 𝐶 , and if (𝑢, 𝑣) ∈ 𝐸, then
𝑐(𝑢) ≠ 𝑐(𝑣).

• Example: 3-coloring 𝑐 ∶ 𝑉 → {R, G, B}.
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3-Coloring

For example, this graph is 3-colorable:



3-Coloring

... and this one is not:

×



3-Coloring ∈ NP

• The 3-colorability problem (given a graph
𝐺, answer whether it is 3-colorable) clearly
belongs to the NP class.

• Indeed, we can non-deterministically guess
the coloring (“hint”) and then check its
correctness in poly time.

• Thus, a particular case of Cook – Levin
theorem states that 3-COLOR ≤𝑃

𝑚 SAT.
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Reducing 3-COLOR to SAT

• For any graph 𝐺 we can construct a
Boolean formula 𝜑𝐺, which is satisfiable if
and only if 𝐺 is 3-colorable.

• The reducing function 𝑓 ∶ 𝐺 ↦ 𝜑𝐺 will be
poly-time computable.

• Moreover, each correct 3-coloring of 𝐺 will
correspond to a satisfying assignment of
𝜑𝐺, and vice versa.
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Reducing 3-COLOR to SAT

• For each vertex 𝑣𝑖 ∈ 𝑉 , introduce the
following Boolean variables:
𝑟𝑖 “𝑣𝑖 is colored red”
𝑔𝑖 “𝑣𝑖 is colored green”
𝑏𝑖 “𝑣𝑖 is colored blue”

• 𝜑𝐺 will represent natural conditions on
these propositions.
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Reducing 3-COLOR to SAT

𝜑𝐺 = ⋀
𝑣𝑖∈𝑉

((𝑟𝑖 ∨ 𝑔𝑖 ∨ 𝑏𝑖)∧

(¬𝑟𝑖 ∨ ¬𝑔𝑖) ∧ (¬𝑟𝑖 ∨ ¬𝑏𝑖) ∧ (¬𝑏𝑖 ∨ ¬𝑔𝑖))∧
⋀

(𝑣𝑖,𝑣𝑘)∈𝐸
((¬𝑟𝑖 ∨ ¬𝑟𝑘) ∧ (¬𝑔𝑖 ∨ ¬𝑔𝑘) ∧ (¬𝑏𝑖 ∨ ¬𝑏𝑘))

• 3-colorings of 𝐺 and satisfying assignments
of 𝜑𝐺 are in one-to-one correspondence.

• By the way, 𝜑𝐺 is a 3-CNF.
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Reducing 3-COLOR to SAT

• Thus, if SAT were solvable in poly time, so
would have been 3-COLOR.

• In reality, however, we do not know a
polynomial algorithm for SAT, and such
reductions give some evidence against its
existence.

• The idea of Cook – Levin theorem is that
any NP guessing can be represented as
guessing a satisfying assignment for a
Boolean formula.
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Reducing 3-COLOR to SAT

• Reductions to SAT also yield positive
results.

• While there is no known polynomial
algorithm for SAT, modern SAT solvers are
quite efficient in practice.

• One of the reasons is that we measure worst
case complexity, and instances which appear
in practice could avoid such cases.

• Cook – Levin style reductions allow to use
SAT solvers for other NP problems.
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Cook – Levin Theorem

Theorem
SAT is NP-complete, that is, if 𝐴 ∈ NP, then 𝐴
is 𝑚-reducible to SAT.



Turing Machines

• In order to prove Cook – Levin theorem, we
need to show that 𝐴 ≤𝑃

𝑚 SAT for any
𝐴 ∈ NP.

• This requires a formal notion of what an
algorithm is, that is, a formal model of
computation.

• Let us define one such model, namely,
Turing machines.
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Turing Machines

• A Turing machine is a tuple
𝔐 = ⟨Σ, Γ, 𝑄, 𝑞0, 𝑞𝐹 , Δ⟩, where:

• Σ is the external alphabet (in which input and
output are formulated);

• Γ ⊇ Σ is the internal alphabet (used in the
computation process);

• 𝑄 is a finite set of states;
• 𝑞0 is the starting state and 𝑞𝐹 is the final one;
• Δ is the set of rules (also finite).



Turing Machines
• At each step of its run, the machine keeps
one of the states (from 𝑄) in its internal
memory, and observes one of the cells of
an infinite tape:

… …𝑎𝑖𝑎𝑖−1 𝑎𝑖+1

𝑞

• At each moment, only a finite part of the tape
is populated by meaningful symbols; the rest
is padded by “blank” symbols 𝐵 ∈ Γ − Σ.
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Turing Machines

• Rules of 𝔐 (elements of Δ) are of the form
⟨𝑝, 𝑎⟩ → ⟨𝑞, 𝑏, 𝑑⟩, where 𝑝, 𝑞 ∈ 𝑄, 𝑎, 𝑏 ∈ Γ,
and 𝑑 ∈ {𝐿, 𝑅, 𝑁}.

• Such a rule is executed as follows. If 𝔐
keeps 𝑝 in its internal memory and
observes 𝑎 on the tape, then the following
move is performed:
1. replace 𝑎 with 𝑏 in the cell;
2. replace 𝑝 with 𝑞 in the internal memory;
3. if 𝑑 = 𝐿, move one cell left; if 𝑑 = 𝑅, move
one cell right; if 𝑑 = 𝑁 , stay on the same cell.
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Turing Machines
• 𝔐 is deterministic, if for any 𝑝 ∈ 𝑄 and

𝑎 ∈ Γ there is at most one rule of the form
⟨𝑝, 𝑎⟩ → …

• A deterministic machine, on a given input,
has a unique execution trajectory; in
general, the trajectory may branch.

• Once a machine runs into state 𝑞𝐹 , it stops
successfully, and the word on the tape is
the output.

• It is also possible to stop unsuccessfully or
to run infinitely long.
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NP and co-NP
• A non-deterministic Turing machine solving
a decision problem “accepts” the input, if it
stops successfully and yields “yes” at at
least one trajectory.

• Thus, the complement of an NP-problem
(say, non-satisfiability) is, in general, not in
NP itself.

• This class is called co-NP.
• Example: SAT is in NP, while TAUT (checking
whether a Boolean formula is a tautology)
is in co-NP.
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Church – Turing Thesis

• Turing machines form a complete
computational model, by the following
Church – Turing thesis: any computation
on a reasonable computing device can be
performed on a Turing machine.

• Moreover, if the computation is polynomial,
it can be performed also polynomially on
the Turing machine.

• The degree of the polynomial could change.
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Cook – Levin Theorem

Theorem
SAT is NP-complete, that is, if 𝐴 ∈ NP, then 𝐴
is 𝑚-reducible to SAT.



Cook – Levin Theorem
Proof sketch.

• Suppose 𝐴 ∈ NP, let us show 𝐴 ≤𝑃
𝑚 SAT.

• We encode each configuration of the
non-deterministic Turing machine for 𝐴 as
a binary word:

… …𝑎𝑖𝑎𝑖−1 𝑎𝑖+1

𝑞

0𝑚 𝑎1 … 0𝑚 𝑎𝑖−1 𝑞 𝑎𝑖 0𝑚 𝑎𝑖+1 …



Cook – Levin Theorem

• The sequence of configurations (protocol)
of 𝐴 on input 𝑥 is encoded by a binary
matrix (𝑏𝑖𝑗) of size (𝑚 ⋅ 𝑝(|𝑥|)) × 𝑝(|𝑥|).

• Next, we construct a formula 𝜑𝑥 with
variables 𝑏00, 𝑏01, … which expresses the
fact that this matrix represents a correct
protocol of a successful execution.
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Cook – Levin Theorem
𝜑𝑥 is a conjunction of the following claims:

1. the first row represents the configuration
with 𝑥 on the tape, the machine observing
its first letter;

2. each next row is obtained from the
previous one by one of the rules of the
machine;

3. the last row includes state 𝑞𝐹 and the
answer “yes” (1).

This is all expressible as Boolean formulae.
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• The reducing function is 𝑓 ∶ 𝑥 ↦ 𝜑𝑥.

• 𝐴(𝑥) = 1 ⟺ 𝜑𝑥 is satisfiable.
• Thus, 𝐴 ≤𝑃

𝑚 SAT.
• Since 𝐴 was taken arbitrarily, we get
NP-hardness of SAT.

• On the other hand, SAT is in NP, so it is
NP-complete.
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NP-completeness of 3-SAT

• 3-SAT is a special version of SAT, where only
3-CNFs are allowed.

• Trivially, 3-SAT ≤𝑃
𝑚 SAT... but we need the

opposite reduction!
• Let us show that SAT ≤𝑃

𝑚 3-SAT.
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Tseitin’s Transformations
Theorem
For any Boolean formula 𝐴, there exists an
equisatisfiable 3-CNF 𝐵 of polynomial size.

• Equisatisfiability means that 𝐵 is
satisfiable iff so is 𝐴.

• Constructing an equivalent 3-CNF of
polynomial size is not always possible:
even translation to CNF can lead to
exponential blowup.
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Tseitin’s Transformations

• Tseitin’s transformations look like
translation into 3-address (Assembler-like)
code:
(𝑎 + 𝑏) ∗ (𝑐 + 𝑑) is translated to
“add 𝑎 𝑏 𝑡1; add 𝑐 𝑑 𝑡2; mul 𝑡1 𝑡2 𝑟”

• For each subformula we introduce a new
variable and write the corresponding
equivalences.
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Tseitin’s Transformations

Example: (𝑝 → 𝑞) ∨ (𝑞 → (𝑝 → 𝑟))

(𝑡1 ↔ (𝑝 → 𝑞)) ∧
(𝑡2 ↔ (𝑝 → 𝑟)) ∧
(𝑡3 ↔ (𝑞 → 𝑡2)) ∧
(𝑡4 ↔ (𝑡1 ∨ 𝑡3)) ∧
𝑡4
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Tseitin’s Transformations
Transform into 3-CNF by the following table:

𝑡𝑘 ↔ (𝑡𝑖 ∧ 𝑡𝑗) (¬𝑡𝑖 ∨ ¬𝑡𝑗 ∨ 𝑡𝑘) ∧ (𝑡𝑖 ∨ ¬𝑡𝑘) ∧ (𝑡𝑗 ∨ ¬𝑡𝑘)
𝑡𝑘 ↔ (𝑡𝑖 ∨ 𝑡𝑗) (𝑡𝑖 ∨ 𝑡𝑗 ∨ ¬𝑡𝑘) ∧ (¬𝑡𝑖 ∨ 𝑡𝑘) ∧ (¬𝑡𝑗 ∨ 𝑡𝑘)
𝑡𝑘 ↔ (𝑡𝑖 → 𝑡𝑗) (¬𝑡𝑖 ∨ 𝑡𝑗 ∨ ¬𝑡𝑘) ∧ (𝑡𝑖 ∨ 𝑡𝑘) ∧ (¬𝑡𝑗 ∨ 𝑡𝑘)
𝑡𝑘 ↔ ¬𝑡𝑖 (𝑡𝑖 ∨ 𝑡𝑘) ∧ (¬𝑡𝑖 ∨ ¬𝑡𝑘)

For our example, we get:
(¬𝑝 ∨ 𝑞 ∨ ¬𝑡1) ∧ (𝑝 ∨ 𝑡1) ∧ (¬𝑞 ∨ 𝑡1) ∧
(¬𝑝 ∨ 𝑟 ∨ ¬𝑡2) ∧ (𝑝 ∨ 𝑡2) ∧ (¬𝑟 ∨ 𝑡2) ∧
(¬𝑞 ∨ 𝑡2 ∨ ¬𝑡3) ∧ (𝑞 ∨ 𝑡3) ∧ (¬𝑡2 ∨ 𝑡3) ∧
(𝑡1 ∨ 𝑡3 ∨ ¬𝑡4) ∧ (¬𝑡1 ∨ 𝑡4) ∧ (¬𝑡3 ∨ 𝑡4) ∧ 𝑡4
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Beyond Decision Problems

• An NP decision problem is the question
whether there exists a witness 𝑦 such that
𝑅(𝑥, 𝑦) = 1.

• E.g., a satisfying assignment for 𝜑.
• Search problem: yield a witness or say “no.”
• Counting problem (the #P class): yield the
number of witnesses.

• Finally, we could ask for all witnesses.
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Beyond Decision Problems
• The problem of yielding all witnesses could
be unconditionally non-polynomial, since
the answer could be exponential.

• If P = NP, then any search problem is
solvable in poly time.

• Dichotomy: take 𝜑[𝑝1 ∶= 0] and 𝜑[𝑝1 ∶= 1],
find out which is satisfiable, then do the same
for 𝑝2, 𝑝3, ….

• This gives a poly-time algorithm for the search
problem for 2-CNF.

• The counting problem could be harder
than the decision one (example: DNF-SAT).
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