Graphs
 Cook - Levin Theorem

Stepan Kuznetsov
Discrete Math Bridging Course, HSE University

The P Class

- Now we discuss only decision problems: that is, algorithmic questions with a "yes/no" answer.

The P Class

- Now we discuss only decision problems: that is, algorithmic questions with a "yes/no" answer.
- For convenience, let the input data be a word over an alphabet: $x \in \Sigma^{*}$.

The P Class

- Now we discuss only decision problems: that is, algorithmic questions with a "yes/no" answer.
- For convenience, let the input data be a word over an alphabet: $x \in \Sigma^{*}$.
- The size of input, $|x|$ is the length of x in symbols.

The P Class

- Now we discuss only decision problems: that is, algorithmic questions with a "yes/no" answer.
- For convenience, let the input data be a word over an alphabet: $x \in \Sigma^{*}$.
- The size of input, $|x|$ is the length of x in symbols.
- A decision problem is in the P class, if there exists an algorithm for solving it, whose worst case running time is bounded by $p(|x|)$.

The NP Class

- There are several equivalent definitions of the NP class.

The NP Class

- There are several equivalent definitions of the NP class.
- Def. 1: non-deterministic computations.

The NP Class

- There are several equivalent definitions of the NP class.
- Def. 1: non-deterministic computations.
- The computation process may branch: at some point of execution, there could be more than one (but a finite number of) possibilities to perform the next step.

The NP Class

- There are several equivalent definitions of the NP class.
- Def. 1: non-deterministic computations.
- The computation process may branch: at some point of execution, there could be more than one (but a finite number of) possibilities to perform the next step.
- Angelic choice: if at least one execution trajectory yields "yes," then the answer is "yes."

The NP Class

- There are several equivalent definitions of the NP class.
- Def. 1: non-deterministic computations.
- The computation process may branch: at some point of execution, there could be more than one (but a finite number of) possibilities to perform the next step.
- Angelic choice: if at least one execution trajectory yields "yes," then the answer is "yes."
- One can implement non-deterministic guess (say, guess the satisfying assignment for a 3 -CNF or guess a Hamiltonian cycle in a graph).

NP-Completeness

- m-reduction (Carp reduction): A is
reducible to $B\left(A \leq_{m}^{P} B\right)$, if there exists a polytime computable function $f: \Sigma^{*} \rightarrow \Sigma^{*}$, such that $A(x)=1 \Leftrightarrow B(f(x))=1$.

NP-Completeness

- m-reduction (Carp reduction): A is
reducible to $B\left(A \leq_{m}^{P} B\right)$, if there exists a polytime computable function $f: \Sigma^{*} \rightarrow \Sigma^{*}$, such that $A(x)=1 \Leftrightarrow B(f(x))=1$.
- The idea of reduction: if we can solve B, we can also solve A : $A(x)=B(f(x))$.

NP-Completeness

- m-reduction (Carp reduction): A is
reducible to $B\left(A \leq_{m}^{P} B\right)$, if there exists a polytime computable function $f: \Sigma^{*} \rightarrow \Sigma^{*}$, such that $A(x)=1 \Longleftrightarrow B(f(x))=1$.
- The idea of reduction: if we can solve B, we can also solve A : $A(x)=B(f(x))$.
- A problem B is NP-hard if $A \leq_{m}^{P} B$ for any $A \in \mathrm{NP}$.

NP-Completeness

- m-reduction (Carp reduction): A is
reducible to $B\left(A \leq_{m}^{P} B\right)$, if there exists a polytime computable function $f: \Sigma^{*} \rightarrow \Sigma^{*}$, such that $A(x)=1 \Longleftrightarrow B(f(x))=1$.
- The idea of reduction: if we can solve B, we can also solve A : $A(x)=B(f(x))$.
- A problem B is NP-hard if $A \leq_{m}^{P} B$ for any $A \in \mathrm{NP}$.
- B is NP-complete if $B \in N P$ and B is NP-hard.

Cook - Levin Theorem

Theorem

SAT (satisfiability of arbitrary Boolean formulae) NP-complete, that is, if $A \in N P$, then A is m-reducible to SAT.

Example: Graph Coloring

- Let us consider an example of an NP problem and show how it can be reduced to SAT.

Example: Graph Coloring

- Let us consider an example of an NP problem and show how it can be reduced to SAT.
- The problem is 3-colorability of graphs.

Example: Graph Coloring

- Let us consider an example of an NP problem and show how it can be reduced to SAT.
- The problem is 3-colorability of graphs.
- Let us first recall what a graph is.

Graphs

An undirected graph is a formed by set of vertices, some of which are connected by edges.

Graphs

An undirected graph is a formed by set of vertices, some of which are connected by edges.

Graphs

In a directed graph, edges have arrows on them:

Loops and Parallel Edges

- Beware of two special kinds of edges in graphs.

Loops and Parallel Edges

- Beware of two special kinds of edges in graphs.
- Loop: a vertex connected to itself.
8

Loops and Parallel Edges

- Beware of two special kinds of edges in graphs.
- Loop: a vertex connected to itself.
8
- Parallel edges: two vertices connected by more than one edge.

Loops and Parallel Edges

- By default, loops and parallel edges are disallowed.

Loops and Parallel Edges

- By default, loops and parallel edges are disallowed.
- A graph with parallel edges is called a multigraph.

Loops and Parallel Edges

- By default, loops and parallel edges are disallowed.
- A graph with parallel edges is called a multigraph.
- A graph with parallel edges and loops is called a pseudograph.

Loops and Parallel Edges

- By default, loops and parallel edges are disallowed.
- A graph with parallel edges is called a multigraph.
- A graph with parallel edges and loops is called a pseudograph.
- Note that in a directed graph edges connecting two vertices in different directions are not considered parallel.

Applications of Graphs

Maps (GIS): vertices = cities, edges = routes.

Lampman @ Wikipedia

Applications of Graphs

Chemistry: graphs of molecular structure.

Applications of Graphs

Internet: network topology.

Benjamin D. Esham @ Wikipedia

Applications of Graphs

Linguistics: syntactic dependencies.

Applications of Graphs

Graph: Formal Definition

- A pseudograph can be formally defined as $G=(V, E)$, where V is the set of vertices (arbitrary finite set) and $E \subseteq V \times V=\{(u, v) \mid u, v \in V\}$ is the set of edges, such that $(u, v) \in E \Longleftrightarrow(v, u) \in E$.

Graph: Formal Definition

- A pseudograph can be formally defined as $G=(V, E)$, where V is the set of vertices (arbitrary finite set) and $E \subseteq V \times V=\{(u, v) \mid u, v \in V\}$ is the set of edges, such that $(u, v) \in E \Longleftrightarrow(v, u) \in E$.
- In other words, a pseudograph is a symmetric binary relation on a finite set V.

Graph: Formal Definition

- A pseudograph can be formally defined as $G=(V, E)$, where V is the set of vertices (arbitrary finite set) and $E \subseteq V \times V=\{(u, v) \mid u, v \in V\}$ is the set of edges, such that $(u, v) \in E \Longleftrightarrow(v, u) \in E$.
- In other words, a pseudograph is a symmetric binary relation on a finite set V.
- An undirected graph is a symmetric irreflexive relation: $(u, u) \notin E$ for any u.

Graph: Formal Definition

- A pseudograph can be formally defined as $G=(V, E)$, where V is the set of vertices (arbitrary finite set) and $E \subseteq V \times V=\{(u, v) \mid u, v \in V\}$ is the set of edges, such that $(u, v) \in E \Longleftrightarrow(v, u) \in E$.
- In other words, a pseudograph is a symmetric binary relation on a finite set V.
- An undirected graph is a symmetric irreflexive relation: $(u, u) \notin E$ for any u.
- A directed graph is an arbitrary irreflexive relation.

Graph: Formal Definition

- A pseudograph can be formally defined as $G=(V, E)$, where V is the set of vertices (arbitrary finite set) and $E \subseteq V \times V=\{(u, v) \mid u, v \in V\}$ is the set of edges, such that $(u, v) \in E \Longleftrightarrow(v, u) \in E$.
- In other words, a pseudograph is a symmetric binary relation on a finite set V.
- An undirected graph is a symmetric irreflexive relation: $(u, u) \notin E$ for any u.
- A directed graph is an arbitrary irreflexive relation.
- The formal definition of multigraph is more involved.

Coloring

- We color vertices into colors of a set C, and our coloring is correct, if each edge connects vertices of different colors.

Coloring

- We color vertices into colors of a set C, and our coloring is correct, if each edge connects vertices of different colors.
- Formally, $c: V \rightarrow C$, and if $(u, v) \in E$, then $c(u) \neq c(v)$.

Coloring

- We color vertices into colors of a set C, and our coloring is correct, if each edge connects vertices of different colors.
- Formally, $c: V \rightarrow C$, and if $(u, v) \in E$, then $c(u) \neq c(v)$.
- Example: 3-coloring $c: V \rightarrow\{\mathrm{R}, \mathrm{G}, \mathrm{B}\}$.

3-Coloring

For example, this graph is 3-colorable:

3-Coloring

... and this one is not:

3-Coloring \in NP

- The 3-colorability problem (given a graph G, answer whether it is 3 -colorable) clearly belongs to the NP class.

3-Coloring \in NP

- The 3-colorability problem (given a graph G, answer whether it is 3 -colorable) clearly belongs to the NP class.
- Indeed, we can non-deterministically guess the coloring ("hint") and then check its correctness in poly time.

3-Coloring \in NP

- The 3-colorability problem (given a graph G, answer whether it is 3 -colorable) clearly belongs to the NP class.
- Indeed, we can non-deterministically guess the coloring ("hint") and then check its correctness in poly time.
- Thus, a particular case of Cook - Levin theorem states that 3-COLOR \leq_{m}^{P} SAT.

Reducing 3-COLOR to SAT

- For any graph G we can construct a Boolean formula φ_{G}, which is satisfiable if and only if G is 3 -colorable.

Reducing 3-COLOR to SAT

- For any graph G we can construct a Boolean formula φ_{G}, which is satisfiable if and only if G is 3 -colorable.
- The reducing function $f: G \mapsto \varphi_{G}$ will be poly-time computable.

Reducing 3-COLOR to SAT

- For any graph G we can construct a Boolean formula φ_{G}, which is satisfiable if and only if G is 3-colorable.
- The reducing function $f: G \mapsto \varphi_{G}$ will be poly-time computable.
- Moreover, each correct 3-coloring of G will correspond to a satisfying assignment of φ_{G}, and vice versa.

Reducing 3-COLOR to SAT

- For each vertex $v_{i} \in V$, introduce the following Boolean variables:
r_{i} " v_{i} is colored red"
$g_{i} \quad{ }^{\prime} v_{i}$ is colored green"
$b_{i} \quad$ " v_{i} is colored blue"

Reducing 3-COLOR to SAT

- For each vertex $v_{i} \in V$, introduce the following Boolean variables:
r_{i} " v_{i} is colored red"
$g_{i} \quad$ " v_{i} is colored green"
$b_{i} \quad$ " v_{i} is colored blue"
- φ_{G} will represent natural conditions on these propositions.

Reducing 3-COLOR to SAT

$$
\begin{aligned}
& \varphi_{G}=\bigwedge_{v_{i} \in V}\left(\left(r_{i} \vee g_{i} \vee b_{i}\right) \wedge\right. \\
& \left.\quad\left(\neg r_{i} \vee \neg g_{i}\right) \wedge\left(\neg r_{i} \vee \neg b_{i}\right) \wedge\left(\neg b_{i} \vee \neg g_{i}\right)\right) \wedge \\
& \bigwedge_{\left(v_{i}, v_{k}\right) \in E}\left(\left(\neg r_{i} \vee \neg r_{k}\right) \wedge\left(\neg g_{i} \vee \neg g_{k}\right) \wedge\left(\neg b_{i} \vee \neg b_{k}\right)\right)
\end{aligned}
$$

Reducing 3-COLOR to SAT

$$
\begin{aligned}
& \varphi_{G}=\bigwedge_{v_{i} \in V}\left(\left(r_{i} \vee g_{i} \vee b_{i}\right) \wedge\right. \\
& \left.\quad\left(\neg r_{i} \vee \neg g_{i}\right) \wedge\left(\neg r_{i} \vee \neg b_{i}\right) \wedge\left(\neg b_{i} \vee \neg g_{i}\right)\right) \wedge \\
& \bigwedge_{\left(v_{i}, v_{k}\right) \in E}\left(\left(\neg r_{i} \vee \neg r_{k}\right) \wedge\left(\neg g_{i} \vee \neg g_{k}\right) \wedge\left(\neg b_{i} \vee \neg b_{k}\right)\right)
\end{aligned}
$$

- 3-colorings of G and satisfying assignments of φ_{G} are in one-to-one correspondence.

Reducing 3-COLOR to SAT

$$
\begin{aligned}
& \varphi_{G}=\bigwedge_{v_{i} \in V}\left(\left(r_{i} \vee g_{i} \vee b_{i}\right) \wedge\right. \\
& \left.\quad\left(\neg r_{i} \vee \neg g_{i}\right) \wedge\left(\neg r_{i} \vee \neg b_{i}\right) \wedge\left(\neg b_{i} \vee \neg g_{i}\right)\right) \wedge \\
& \bigwedge_{\left(v_{i}, v_{k}\right) \in E}\left(\left(\neg r_{i} \vee \neg r_{k}\right) \wedge\left(\neg g_{i} \vee \neg g_{k}\right) \wedge\left(\neg b_{i} \vee \neg b_{k}\right)\right)
\end{aligned}
$$

- 3-colorings of G and satisfying assignments of φ_{G} are in one-to-one correspondence.
- By the way, φ_{G} is a 3-CNF.

Reducing 3-COLOR to SAT

- Thus, if SAT were solvable in poly time, so would have been 3-COLOR.

Reducing 3-COLOR to SAT

- Thus, if SAT were solvable in poly time, so would have been 3-COLOR.
- In reality, however, we do not know a polynomial algorithm for SAT, and such reductions give some evidence against its existence.

Reducing 3-COLOR to SAT

- Thus, if SAT were solvable in poly time, so would have been 3-COLOR.
- In reality, however, we do not know a polynomial algorithm for SAT, and such reductions give some evidence against its existence.
- The idea of Cook - Levin theorem is that any NP guessing can be represented as guessing a satisfying assignment for a Boolean formula.

Reducing 3-COLOR to SAT

- Reductions to SAT also yield positive results.

Reducing 3-COLOR to SAT

- Reductions to SAT also yield positive results.
- While there is no known polynomial algorithm for SAT, modern SAT solvers are quite efficient in practice.

Reducing 3-COLOR to SAT

- Reductions to SAT also yield positive results.
- While there is no known polynomial algorithm for SAT, modern SAT solvers are quite efficient in practice.
- One of the reasons is that we measure worst case complexity, and instances which appear in practice could avoid such cases.

Reducing 3-COLOR to SAT

- Reductions to SAT also yield positive results.
- While there is no known polynomial algorithm for SAT, modern SAT solvers are quite efficient in practice.
- One of the reasons is that we measure worst case complexity, and instances which appear in practice could avoid such cases.
- Cook - Levin style reductions allow to use SAT solvers for other NP problems.

Cook - Levin Theorem

Theorem
SAT is NP-complete, that is, if $A \in N P$, then A is m-reducible to SAT.

Turing Machines

- In order to prove Cook - Levin theorem, we need to show that $A \leq_{m}^{P}$ SAT for any $A \in N P$.

Turing Machines

- In order to prove Cook - Levin theorem, we need to show that $A \leq_{m}^{P}$ SAT for any $A \in \mathrm{NP}$.
- This requires a formal notion of what an algorithm is, that is, a formal model of computation.

Turing Machines

- In order to prove Cook - Levin theorem, we need to show that $A \leq_{m}^{P}$ SAT for any $A \in \mathrm{NP}$.
- This requires a formal notion of what an algorithm is, that is, a formal model of computation.
- Let us define one such model, namely, Turing machines.

Turing Machines

- A Turing machine is a tuple $\mathfrak{M}=\left\langle\Sigma, \Gamma, Q, q_{0}, q_{F}, \Delta\right\rangle$, where:
- Σ is the external alphabet (in which input and output are formulated);
- $\Gamma \supseteq \Sigma$ is the internal alphabet (used in the computation process);
- Q is a finite set of states;
- q_{0} is the starting state and q_{F} is the final one;
- Δ is the set of rules (also finite).

Turing Machines

- At each step of its run, the machine keeps one of the states (from Q) in its internal memory, and observes one of the cells of an infinite tape:

Turing Machines

- At each step of its run, the machine keeps one of the states (from Q) in its internal memory, and observes one of the cells of an infinite tape:

- At each moment, only a finite part of the tape is populated by meaningful symbols; the rest is padded by "blank" symbols $B \in \Gamma-\Sigma$.

Turing Machines

- Rules of \mathfrak{M} (elements of Δ) are of the form $\langle p, a\rangle \rightarrow\langle q, b, d\rangle$, where $p, q \in Q, a, b \in \Gamma$, and $d \in\{L, R, N\}$.

Turing Machines

- Rules of \mathfrak{M} (elements of Δ) are of the form $\langle p, a\rangle \rightarrow\langle q, b, d\rangle$, where $p, q \in Q, a, b \in \Gamma$, and $d \in\{L, R, N\}$.
- Such a rule is executed as follows. If \mathfrak{M} keeps p in its internal memory and observes a on the tape, then the following move is performed:

1. replace a with b in the cell;
2. replace p with q in the internal memory;
3. if $d=L$, move one cell left; if $d=R$, move one cell right; if $d=N$, stay on the same cell.

Turing Machines

- \mathfrak{M} is deterministic, if for any $p \in Q$ and $a \in \Gamma$ there is at most one rule of the form $\langle p, a\rangle \rightarrow \ldots$

Turing Machines

- \mathfrak{M} is deterministic, if for any $p \in Q$ and $a \in \Gamma$ there is at most one rule of the form $\langle p, a\rangle \rightarrow \ldots$
- A deterministic machine, on a given input, has a unique execution trajectory; in general, the trajectory may branch.

Turing Machines

- \mathfrak{M} is deterministic, if for any $p \in Q$ and $a \in \Gamma$ there is at most one rule of the form $\langle p, a\rangle \rightarrow \ldots$
- A deterministic machine, on a given input, has a unique execution trajectory; in general, the trajectory may branch.
- Once a machine runs into state q_{F}, it stops successfully, and the word on the tape is the output.

Turing Machines

- \mathfrak{M} is deterministic, if for any $p \in Q$ and $a \in \Gamma$ there is at most one rule of the form $\langle p, a\rangle \rightarrow \ldots$
- A deterministic machine, on a given input, has a unique execution trajectory; in general, the trajectory may branch.
- Once a machine runs into state q_{F}, it stops successfully, and the word on the tape is the output.
- It is also possible to stop unsuccessfully or to run infinitely long.

NP and co-NP

- A non-deterministic Turing machine solving a decision problem "accepts" the input, if it stops successfully and yields "yes" at at least one trajectory.

NP and co-NP

- A non-deterministic Turing machine solving a decision problem "accepts" the input, if it stops successfully and yields "yes" at at least one trajectory.
- Thus, the complement of an NP-problem (say, non-satisfiability) is, in general, not in NP itself.

NP and co-NP

- A non-deterministic Turing machine solving a decision problem "accepts" the input, if it stops successfully and yields "yes" at at least one trajectory.
- Thus, the complement of an NP-problem (say, non-satisfiability) is, in general, not in NP itself.
- This class is called co-NP.

NP and co-NP

- A non-deterministic Turing machine solving a decision problem "accepts" the input, if it stops successfully and yields "yes" at at least one trajectory.
- Thus, the complement of an NP-problem (say, non-satisfiability) is, in general, not in NP itself.
- This class is called co-NP.
- Example: SAT is in NP, while TAUT (checking whether a Boolean formula is a tautology) is in co-NP.

Church - Turing Thesis

- Turing machines form a complete computational model, by the following Church - Turing thesis: any computation on a reasonable computing device can be performed on a Turing machine.

Church - Turing Thesis

- Turing machines form a complete computational model, by the following Church - Turing thesis: any computation on a reasonable computing device can be performed on a Turing machine.
- Moreover, if the computation is polynomial, it can be performed also polynomially on the Turing machine.

Church - Turing Thesis

- Turing machines form a complete computational model, by the following Church - Turing thesis: any computation on a reasonable computing device can be performed on a Turing machine.
- Moreover, if the computation is polynomial, it can be performed also polynomially on the Turing machine.
- The degree of the polynomial could change.

Cook - Levin Theorem

Theorem
SAT is NP-complete, that is, if $A \in N P$, then A is m-reducible to SAT.

Cook - Levin Theorem

Proof sketch.

- Suppose $A \in$ NP, let us show $A \leq_{m}^{P}$ SAT.
- We encode each configuration of the non-deterministic Turing machine for A as a binary word:

$$
0^{0^{m}} \quad a_{1} \quad \cdots \quad 0^{m} \quad a_{i-1} \quad q \quad a_{i} \quad 0^{m} \quad a_{i+1}
$$

Cook - Levin Theorem

- The sequence of configurations (protocol) of A on input x is encoded by a binary matrix $\left(b_{i j}\right)$ of size $(m \cdot p(|x|)) \times p(|x|)$.

Cook - Levin Theorem

- The sequence of configurations (protocol) of A on input x is encoded by a binary matrix $\left(b_{i j}\right)$ of size $(m \cdot p(|x|)) \times p(|x|)$.
- Next, we construct a formula φ_{x} with variables b_{00}, b_{01}, \ldots which expresses the fact that this matrix represents a correct protocol of a successful execution.

Cook - Levin Theorem

φ_{x} is a conjunction of the following claims:

1. the first row represents the configuration with x on the tape, the machine observing its first letter;
2. each next row is obtained from the previous one by one of the rules of the machine;
3. the last row includes state q_{F} and the answer "yes" (1).

Cook - Levin Theorem

φ_{x} is a conjunction of the following claims:

1. the first row represents the configuration with x on the tape, the machine observing its first letter;
2. each next row is obtained from the previous one by one of the rules of the machine;
3. the last row includes state q_{F} and the answer "yes" (1).

This is all expressible as Boolean formulae.

Cook - Levin Theorem

- The reducing function is $f: x \mapsto \varphi_{x}$.

Cook - Levin Theorem

- The reducing function is $f: x \mapsto \varphi_{x}$.
- $A(x)=1 \Leftrightarrow \varphi_{x}$ is satisfiable.

Cook - Levin Theorem

- The reducing function is $f: x \mapsto \varphi_{x}$.
- $A(x)=1 \Leftrightarrow \varphi_{x}$ is satisfiable.
- Thus, $A \leq_{m}^{P}$ SAT.

Cook - Levin Theorem

- The reducing function is $f: x \mapsto \varphi_{x}$.
- $A(x)=1 \Leftrightarrow \varphi_{x}$ is satisfiable.
- Thus, $A \leq_{m}^{P}$ SAT.
- Since A was taken arbitrarily, we get NP-hardness of SAT.

Cook - Levin Theorem

- The reducing function is $f: x \mapsto \varphi_{x}$.
- $A(x)=1 \Leftrightarrow \varphi_{x}$ is satisfiable.
- Thus, $A \leq_{m}^{P}$ SAT.
- Since A was taken arbitrarily, we get NP-hardness of SAT.
- On the other hand, SAT is in NP, so it is NP-complete.

NP-completeness of 3-SAT

- 3-SAT is a special version of SAT, where only 3 -CNFs are allowed.

NP-completeness of 3-SAT

- 3-SAT is a special version of SAT, where only 3-CNFs are allowed.
- Trivially, 3-SAT \leq_{m}^{P} SAT... but we need the opposite reduction!

NP-completeness of 3-SAT

- 3-SAT is a special version of SAT, where only 3-CNFs are allowed.
- Trivially, 3-SAT \leq_{m}^{P} SAT... but we need the opposite reduction!
- Let us show that SAT $\leq_{m}^{P} 3$-SAT.

Tseitin's Transformations

Theorem

For any Boolean formula A, there exists an equisatisfiable 3-CNF B of polynomial size.

- Equisatisfiability means that B is satisfiable iff so is A.

Tseitin's Transformations

Theorem

For any Boolean formula A, there exists an equisatisfiable 3-CNF B of polynomial size.

- Equisatisfiability means that B is satisfiable iff so is A.
- Constructing an equivalent 3-CNF of polynomial size is not always possible: even translation to CNF can lead to exponential blowup.

Tseitin's Transformations

- Tseitin's transformations look like translation into 3-address (Assembler-like) code:
$(a+b) *(c+d)$ is translated to
"add $a b t_{1}$; add $c d t_{2}$; mul $t_{1} t_{2} r$ "

Tseitin's Transformations

- Tseitin's transformations look like translation into 3-address (Assembler-like) code:
$(a+b) *(c+d)$ is translated to "add $a b t_{1}$; add $c d t_{2}$; mul $t_{1} t_{2} r$ "
- For each subformula we introduce a new variable and write the corresponding equivalences.

Tseitin's Transformations

Example: $(p \rightarrow q) \vee(q \rightarrow(p \rightarrow r))$

Tseitin's Transformations

Example: $(p \rightarrow q) \vee(q \rightarrow(p \rightarrow r))$

$$
\begin{aligned}
& \left(t_{1} \leftrightarrow(p \rightarrow q)\right) \wedge \\
& \left(t_{2} \leftrightarrow(p \rightarrow r)\right) \wedge \\
& \left(t_{3} \leftrightarrow\left(q \rightarrow t_{2}\right)\right) \wedge \\
& \left(t_{4} \leftrightarrow\left(t_{1} \vee t_{3}\right)\right) \wedge \\
& t_{4}
\end{aligned}
$$

Tseitin's Transformations

Transform into 3-CNF by the following table:

$$
\begin{array}{l|l}
t_{k} \leftrightarrow\left(t_{i} \wedge t_{j}\right) & \left(\neg t_{i} \vee \neg t_{j} \vee t_{k}\right) \wedge\left(t_{i} \vee \neg t_{k}\right) \wedge\left(t_{j} \vee \neg t_{k}\right) \\
t_{k} \leftrightarrow\left(t_{i} \vee t_{j}\right) & \left(t_{i} \vee t_{j} \vee \neg t_{k}\right) \wedge\left(\neg t_{i} \vee t_{k}\right) \wedge\left(\neg t_{j} \vee t_{k}\right) \\
t_{k} \leftrightarrow\left(t_{i} \rightarrow t_{j}\right) & \left(\neg t_{i} \vee t_{j} \vee \neg t_{k}\right) \wedge\left(t_{i} \vee t_{k}\right) \wedge\left(\neg t_{j} \vee t_{k}\right) \\
t_{k} \leftrightarrow \neg t_{i} & \left(t_{i} \vee t_{k}\right) \wedge\left(\neg t_{i} \vee \neg t_{k}\right)
\end{array}
$$

Tseitin's Transformations

Transform into 3-CNF by the following table:

$$
\begin{array}{l|l}
t_{k} \leftrightarrow\left(t_{i} \wedge t_{j}\right) & \left(\neg t_{i} \vee \neg t_{j} \vee t_{k}\right) \wedge\left(t_{i} \vee \neg t_{k}\right) \wedge\left(t_{j} \vee \neg t_{k}\right) \\
t_{k} \leftrightarrow\left(t_{i} \vee t_{j}\right) & \left(t_{i} \vee t_{j} \vee \neg t_{k}\right) \wedge\left(\neg t_{i} \vee t_{k}\right) \wedge\left(\neg t_{j} \vee t_{k}\right) \\
t_{k} \leftrightarrow\left(t_{i} \rightarrow t_{j}\right) & \left(\neg t_{i} \vee t_{j} \vee \neg t_{k}\right) \wedge\left(t_{i} \vee t_{k}\right) \wedge\left(\neg t_{j} \vee t_{k}\right) \\
t_{k} \leftrightarrow \neg t_{i} & \begin{array}{l}
\left(t_{i} \vee t_{k}\right) \wedge\left(\neg t_{i} \vee \neg t_{k}\right)
\end{array}
\end{array}
$$

For our example, we get:

$$
\begin{aligned}
& \left(\neg p \vee q \vee \neg t_{1}\right) \wedge\left(p \vee t_{1}\right) \wedge\left(\neg q \vee t_{1}\right) \wedge \\
& \left(\neg p \vee r \vee \neg t_{2}\right) \wedge\left(p \vee t_{2}\right) \wedge\left(\neg r \vee t_{2}\right) \wedge \\
& \left(\neg q \vee t_{2} \vee \neg t_{3}\right) \wedge\left(q \vee t_{3}\right) \wedge\left(\neg t_{2} \vee t_{3}\right) \wedge \\
& \left(t_{1} \vee t_{3} \vee \neg t_{4}\right) \wedge\left(\neg t_{1} \vee t_{4}\right) \wedge\left(\neg t_{3} \vee t_{4}\right) \wedge t_{4}
\end{aligned}
$$

Beyond Decision Problems

- An NP decision problem is the question whether there exists a witness y such that $R(x, y)=1$.

Beyond Decision Problems

- An NP decision problem is the question whether there exists a witness y such that $R(x, y)=1$.
- E.g., a satisfying assignment for φ.

Beyond Decision Problems

- An NP decision problem is the question whether there exists a witness y such that $R(x, y)=1$.
- E.g., a satisfying assignment for φ.
- Search problem: yield a witness or say "no."

Beyond Decision Problems

- An NP decision problem is the question whether there exists a witness y such that $R(x, y)=1$.
- E.g., a satisfying assignment for φ.
- Search problem: yield a witness or say "no."
- Counting problem (the \#P class): yield the number of witnesses.

Beyond Decision Problems

- An NP decision problem is the question whether there exists a witness y such that $R(x, y)=1$.
- E.g., a satisfying assignment for φ.
- Search problem: yield a witness or say "no."
- Counting problem (the \#P class): yield the number of witnesses.
- Finally, we could ask for all witnesses.

Beyond Decision Problems

- The problem of yielding all witnesses could be unconditionally non-polynomial, since the answer could be exponential.

Beyond Decision Problems

- The problem of yielding all witnesses could be unconditionally non-polynomial, since the answer could be exponential.
- If $P=N P$, then any search problem is solvable in poly time.

Beyond Decision Problems

- The problem of yielding all witnesses could be unconditionally non-polynomial, since the answer could be exponential.
- If $\mathrm{P}=\mathrm{NP}$, then any search problem is solvable in poly time.
- Dichotomy: take $\varphi\left[p_{1}:=0\right]$ and $\varphi\left[p_{1}:=1\right]$, find out which is satisfiable, then do the same for p_{2}, p_{3}, \ldots.

Beyond Decision Problems

- The problem of yielding all witnesses could be unconditionally non-polynomial, since the answer could be exponential.
- If $P=N P$, then any search problem is solvable in poly time.
- Dichotomy: take $\varphi\left[p_{1}:=0\right]$ and $\varphi\left[p_{1}:=1\right]$, find out which is satisfiable, then do the same for p_{2}, p_{3}, \ldots.
- This gives a poly-time algorithm for the search problem for 2-CNF.

Beyond Decision Problems

- The problem of yielding all witnesses could be unconditionally non-polynomial, since the answer could be exponential.
- If $P=N P$, then any search problem is solvable in poly time.
- Dichotomy: take $\varphi\left[p_{1}:=0\right]$ and $\varphi\left[p_{1}:=1\right]$, find out which is satisfiable, then do the same for p_{2}, p_{3}, \ldots.
- This gives a poly-time algorithm for the search problem for 2-CNF.
- The counting problem could be harder than the decision one (example: DNF-SAT).

