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The P Class

- Now we discuss only decision problems:
that is, algorithmic questions with a
“yes/no” answer.

- For convenience, let the input data be a
word over an alphabet: z € ¥*.

- The size of input, |z| is the length of x in
symbols.

- A decision problem is in the P class, if
there exists an algorithm for solving it,
whose worst case running time is bounded

by p(|z|).
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The NP Class

- There are several equivalent definitions of
the NP class.
- Def. 1: non-deterministic computations.

- The computation process may branch: at
some point of execution, there could be more
than one (but a finite number of) possibilities
to perform the next step.

- Angelic choice: if at least one execution
trajectory yields “yes,” then the answer is “yes.”

- One can implement non-deterministic guess
(say, guess the satisfying assignment for a
3-CNF or guess a Hamiltonian cycle in a graph).



NP-Completeness

- m-reduction (Carp reduction): A4 is
reducible to B (A <P’ B), if there exists a
polytime computable function f: ¥* — ¥*,
such that|A(zx) =1 < B(f(x)) =1.




NP-Completeness

- m-reduction (Carp reduction): A4 is
reducible to B (A <P’ B), if there exists a
polytime computable function f: ¥* — ¥*,
such that|A(zx) =1 < B(f(x)) =1.

- The idea of reduction: if we can solve B, we
can also solve A: A(z) = B(f(x)).




NP-Completeness

- m-reduction (Carp reduction): A4 is
reducible to B (A <P’ B), if there exists a
polytime computable function f: ¥* — ¥*,
such that|A(zx) =1 < B(f(x)) =1.

- The idea of reduction: if we can solve B, we
can also solve A: A(z) = B(f(x)).

- A problem B is NP-hard if A <P B for any
A € NP.




NP-Completeness

- m-reduction (Carp reduction): A4 is
reducible to B (A <P’ B), if there exists a
polytime computable function f: ¥* — ¥*,
such that|A(zx) =1 < B(f(x)) =1.

- The idea of reduction: if we can solve B, we
can also solve A: A(z) = B(f(x)).

- A problem B is NP-hard if A <P B for any
A e NP.

- B is NP-complete if B € NP and B is
NP-hard.




Cook - Levin Theorem

Theorem

SAT (satisfiability of arbitrary Boolean
formulae) NP-complete, that is, if A € NP, then
A Is m-reducible to SAT.
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Example: Graph Coloring

- Let us consider an example of an NP
problem and show how it can be reduced

to SAT.
- The problem is 3-colorability of graphs.

- Let us first recall what a graph is.
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Graphs

In a directed graph, edges have arrows on them:
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- Beware of two special kinds of edges in
graphs.

- Loop: a vertex connected to itself.

9

- Parallel edges: two vertices connected by
more than one edge.
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Loops and Parallel Edges

- By default, loops and parallel edges are
disallowed.

- A graph with parallel edges is called a
multigraph.

- A graph with parallel edges and loops is
called a pseudograph.

- Note that in a directed graph edges
connecting two vertices in different
directions are not considered parallel.

¥



Applications of Graphs

Maps (GIS): vertices = cities, edges = routes.




Applications of Graphs

Chemistry: graphs of molecular structure.
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Applications of Graphs

Internet: network topology.
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Applications of Graphs

Linguistics: syntactic dependencies.
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Applications of Graphs
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Graph: Formal Definition

- A pseudograph can be formally defined as
G = (V,E), where V is the set of vertices
(arbitrary finite set) and
ECVxV ={(u,v) |u,v € V}isthe set of
edges such that (u,v) € F <= (v,u) € E.

In other words, a pseudograph is a symmetric
binary relation on a finite set V.

- An undirected graph is a symmetric irreflexive
relation: (u,u) ¢ E for any u.

- Adirected graph is an arbitrary irreflexive
relation.

- The formal definition of multigraph is more
involved.
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Coloring

- We color vertices into colors of a set C, and
our coloring is correct, if each edge
connects vertices of different colors.

- Formally, ¢: V — C, and If (u,v) € E, then
c(u) # c(v).

- Example: 3-coloring ¢: V' — {R, G, B}.



3-Coloring

For example, this graph is 3-colorable:




3-Coloring

.. and this one is not:
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3-Coloring € NP

- The 3-colorability problem (given a graph
G, answer whether it is 3-colorable) clearly
belongs to the NP class.

- Indeed, we can non-deterministically guess
the coloring (“hint”) and then check its
correctness in poly time.

- Thus, a particular case of Cook - Levin
theorem states that 3-COLOR <2 SAT.
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Reducing 3-COLOR to SAT

- For any graph G we can construct a
Boolean formula ¢, which is satisfiable if
and only if G is 3-colorable.

- The reducing function f: G = @ will be
poly-time computable.

- Moreover, each correct 3-coloring of G will
correspond to a satisfying assignment of
©q, and vice versa.
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Reducing 3-COLOR to SAT

- For each vertex v, € V, introduce the

following Boolean variables:
r, ‘v, 1s colored red”

(3

g; ‘v, Is colored green”
b; v, Is colored blue”

@ Will represent natural conditions on
these propositions.
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Reducing 3-COLOR to SAT

Ya = /\ ((r; V. g; V b)) A

v;eV
(=7 V=gy) A (= Vo=by) A (=D, V ﬁgi))/\
/\ ((=ry V=) A (=; V =gy) A (=D, V by )

(Uz' 7vk)6E

- 3-colorings of G and satisfying assignments
of ¢ are in one-to-one correspondence.
- By the way, ¢ is a 3-CNF.
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Reducing 3-COLOR to SAT

- Thus, If SAT were solvable in poly time, so
would have been 3-COLOR.

- In reality, however, we do not know a
polynomial algorithm for SAT, and such
reductions give some evidence against its
existence.

- The idea of Cook - Levin theorem is that
any NP guessing can be represented as
guessing a satisfying assignment for a
Boolean formula.
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Reducing 3-COLOR to SAT

- Reductions to SAT also yield positive
results.

- While there is no known polynomial
algorithm for SAT, modern SAT solvers are
quite efficient in practice.

- One of the reasons is that we measure worst
case complexity, and instances which appear
in practice could avoid such cases.

- Cook = Levin style reductions allow to use
SAT solvers for other NP problems.
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Theorem

SAT is NP-complete, that is, if A € NP, then A
IS m-reducible to SAT.
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Turing Machines

- In order to prove Cook - Levin theorem, we
need to show that A <P SAT for any
A € NP.

- This requires a formal notion of what an
algorithm is, that is, a formal model of
computation.

- Let us define one such model, namely,
Turing machines.



Turing Machines

- A Turing machine is a tuple
M = <Ea Fa Q7 do,9F A>' where:

- ¥ is the external alphabet (in which input and
output are formulated);

- T' D X is the internal alphabet (used in the
computation process);

- @ is a finite set of states;

- g, IS the starting state and g is the final one;

- A is the set of rules (also finite).
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Turing Machines

- At each step of its run, the machine keeps
one of the states (from Q) in its internal
memory, and observes one of the cells of

an infinite tape:
]

T
a;

| ;g i1

- At each moment, only a finite part of the tape
is populated by meaningful symbols; the rest
is padded by “blank” symbols B eI — X.
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Turing Machines

- Rules of 91 (elements of A) are of the form
(p,a) = (q,b,d), where p,q € Q, a,b €T,
andd € {L,R,N}.

- Such a rule is executed as follows. If 90t
keeps p in its internal memory and
observes a on the tape, then the following
move Is performed:

1. replace a with b in the cell;

2. replace p with ¢ in the internal memory;

3. if d = L, move one cell left; if d = R, move
one cell right; if d = N, stay on the same cell.
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Turing Machines

- 9 is deterministic, if for any p € @Q and
a € I there is at most one rule of the form
(p,a) — ...

- A deterministic machine, on a given input,
has a unique execution trajectory; in
general, the trajectory may branch.

- Once a machine runs into state ¢, it stops
successfully, and the word on the tape is
the output.

- It is also possible to stop unsuccessfully or
to run infinitely long.
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NP and co-NP

- A non-deterministic Turing machine solving
a decision problem “accepts” the input, if it
stops successfully and yields “yes” at at
least one trajectory.

- Thus, the complement of an NP-problem
(say, non-satisfiability) is, in general, not in
NP itself.

- This class iIs called co-NP.

- Example: SAT is in NP, while TAUT (checking
whether a Boolean formula is a tautology)
IS In co-NP.
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Church - Turing Thesis

- Turing machines form a complete
computational model, by the following
Church - Turing thesis: any computation
on a reasonable computing device can be
performed on a Turing machine.

- Moreover, if the computation is polynomial,
it can be performed also polynomially on
the Turing machine.

- The degree of the polynomial could change.
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Theorem

SAT is NP-complete, that is, if A € NP, then A
IS m-reducible to SAT.



Cook - Levin Theorem
Proof sketch.

- Suppose A € NP, let us show A <P SAT.

- We encode each configuration of the
non-deterministic Turing machine for A as
a binary word:
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Cook - Levin Theorem

- The sequence of configurations (protocol)
of A on input z is encoded by a binary
matrix (b;;) of size (m - p(|z|)) x p(|z]).

- Next, we construct a formula ¢, with
variables by, byy, ... Which expresses the
fact that this matrix represents a correct
protocol of a successful execution.
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with 2 on the tape, the machine observing
Its first letter;

2. each next row is obtained from the
previous one by one of the rules of the
machine;

3. the last row includes state ¢ and the
answer “yes” (1).



Cook - Levin Theorem

¢, 1S a conjunction of the following claims:

1. the first row represents the configuration
with 2 on the tape, the machine observing
Its first letter;

2. each next row is obtained from the
previous one by one of the rules of the
machine;

3. the last row includes state ¢ and the
answer “yes” (1).

This is all expressible as Boolean formulae.
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Cook - Levin Theorem

- The reducing functionis f: x  ¢,.

- A(z) =1 < ¢, Is satisfiable.

- Thus, A <P’ SAT.

- Since A was taken arbitrarily, we get
NP-hardness of SAT.

- On the other hand, SAT is in NP, so it is
NP-complete.
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NP-completeness of 3-SAT

- 3-SAT is a special version of SAT, where only
3-CNFs are allowed.

- Trivially, 3-SAT <P SAT... but we need the
opposite reduction!

- Let us show that SAT < 3-SAT.
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Tseitin’s Transformations

Theorem
For any Boolean formula A, there exists an
equisatisfiable 3-CNF B of polynomial size.

- Equisatisfiability means that B is
satisfiable iff so is A.

- Constructing an equivalent 3-CNF of
polynomial size is not always possible:
even translation to CNF can lead to
exponential blowup.
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Tseitin’s Transformations

- Tseitin’s transformations look like
translation into 3-address (Assembler-like)
code:

(a+b)* (¢ +d) is translated to
“‘add a b ty; add e d ty; mul ty ty 7"

- For each subformula we introduce a new
variable and write the corresponding
equivalences.
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Tseitin’s Transformations

Example: (p = q) V(g — (p = 1))

(t; < (= q) A
(to > (p— 1)) A
(t5 < (g —t3)) A
(ty <> (t1 ViEg) A



Tseitin’s Transformations

Transform into 3-CNF by the following table:

t < (G At;) | (Tt Vot Vit ) At V—ty) AtV —ty)
ty < (8, Vi) | (8, ViE;Vot) A=t Vi) A=t Vi)
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Tseitin’s Transformations

Transform into 3-CNF by the following table:

t < (G At;) | (Tt Vot Vit ) At V—ty) AtV —ty)
ty < (t; Vi) | (t; Vi \/ﬁt)/\(ﬁti\/t) (=t Vi)
ty < (t; = t;) | (=t \/t vﬁt)A(tin) (—t; Vi)
by <t (

2

For our example, we get:
(mpVaqV—t)) ApVit) A(—g Vi) A
(mp V71V —ty) A(pViy) A(—rViy) A
(ﬁq \% t2 V—t3) A(qVits) A(—ty Vi) A
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Beyond Decision Problems

- An NP decision problem is the question
whether there exists a witness y such that
R(z,y) = 1.

- E.g, a satisfying assignment for .
- Search problem: yield a witness or say “no.”

- Counting problem (the #P class): yield the
number of witnesses.

- Finally, we could ask for all witnesses.
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Beyond Decision Problems

- The problem of yielding all witnesses could
be unconditionally non-polynomial, since
the answer could be exponential.

- If P = NP, then any search problem is
solvable in poly time.

- Dichotomy: take ¢[p, := 0] and ¢[p, = 1],
find out which is satisfiable, then do the same

for py, ps, ...
- This gives a poly-time algorithm for the search

problem for 2-CNF.
- The counting problem could be harder
than the decision one (example: DNF-SAT).



