
NetworkX: Network Analysis
Subgraph Isomorphism

Stepan Kuznetsov

Discrete Math Bridging Course, HSE University

Social Network Analysis
• The study of social structures using graph
theory is called social network analysis
(SNA).

• Thus, SNA is an area on the border of
discrete maths and sociology.

• Vertices in social network graphs represent
actors: people, social entities etc.

• Edges (also called ties or links) represent
various relations between actors.

• The standard example is the friendship
relation in social networks.

Social Network Analysis
• The study of social structures using graph
theory is called social network analysis
(SNA).

• Thus, SNA is an area on the border of
discrete maths and sociology.

• Vertices in social network graphs represent
actors: people, social entities etc.

• Edges (also called ties or links) represent
various relations between actors.

• The standard example is the friendship
relation in social networks.

Social Network Analysis
• The study of social structures using graph
theory is called social network analysis
(SNA).

• Thus, SNA is an area on the border of
discrete maths and sociology.

• Vertices in social network graphs represent
actors: people, social entities etc.

• Edges (also called ties or links) represent
various relations between actors.

• The standard example is the friendship
relation in social networks.

Social Network Analysis
• The study of social structures using graph
theory is called social network analysis
(SNA).

• Thus, SNA is an area on the border of
discrete maths and sociology.

• Vertices in social network graphs represent
actors: people, social entities etc.

• Edges (also called ties or links) represent
various relations between actors.

• The standard example is the friendship
relation in social networks.

Social Network Analysis
• The study of social structures using graph
theory is called social network analysis
(SNA).

• Thus, SNA is an area on the border of
discrete maths and sociology.

• Vertices in social network graphs represent
actors: people, social entities etc.

• Edges (also called ties or links) represent
various relations between actors.

• The standard example is the friendship
relation in social networks.

Parameters of Social Network Graphs

• Graph parameters of social network graphs
are important for sociologists studying
these networks.

• We are going to get acquainted with
specialized software for calculating them.

Parameters of Social Network Graphs

• Graph parameters of social network graphs
are important for sociologists studying
these networks.

• We are going to get acquainted with
specialized software for calculating them.

Parameters of Social Network Graphs

• Notice how some parameters of the graph
behave specifically in the social network
case (if compared to a random graph, for
example).

• We shall see that the so called clustering
coefficients tend to be quite high.

• This reflects the fact that friends of one
person are much more likely to be friends
also.

Parameters of Social Network Graphs

• Notice how some parameters of the graph
behave specifically in the social network
case (if compared to a random graph, for
example).

• We shall see that the so called clustering
coefficients tend to be quite high.

• This reflects the fact that friends of one
person are much more likely to be friends
also.

Parameters of Social Network Graphs

• Notice how some parameters of the graph
behave specifically in the social network
case (if compared to a random graph, for
example).

• We shall see that the so called clustering
coefficients tend to be quite high.

• This reflects the fact that friends of one
person are much more likely to be friends
also.

Parameters of Social Network Graphs
• On the other hand, being highly
clusterized, the social network happens to
be tightly connected.

• The well-known theory of six degrees of
separation (“six handshakes”) claims that
any two people in the world are no more
than six social connections from each
other.

• In graph-theoretic terms, this means that
the diameter of the social connections
graph should be ≤ 6.

Parameters of Social Network Graphs
• On the other hand, being highly
clusterized, the social network happens to
be tightly connected.

• The well-known theory of six degrees of
separation (“six handshakes”) claims that
any two people in the world are no more
than six social connections from each
other.

• In graph-theoretic terms, this means that
the diameter of the social connections
graph should be ≤ 6.

Parameters of Social Network Graphs
• On the other hand, being highly
clusterized, the social network happens to
be tightly connected.

• The well-known theory of six degrees of
separation (“six handshakes”) claims that
any two people in the world are no more
than six social connections from each
other.

• In graph-theoretic terms, this means that
the diameter of the social connections
graph should be ≤ 6.

Dataset

• In our examples, we are going to use the
SNAP dataset.

• SNAP = Stanford Network Analysis Project.
• The dataset we use includes friendship
relations between friends of given 10
Facebook users (so-called ego networks).

• This makes the dataset relatively small.
• All data is of course anonymized.

Dataset

• In our examples, we are going to use the
SNAP dataset.

• SNAP = Stanford Network Analysis Project.

• The dataset we use includes friendship
relations between friends of given 10
Facebook users (so-called ego networks).

• This makes the dataset relatively small.
• All data is of course anonymized.

Dataset

• In our examples, we are going to use the
SNAP dataset.

• SNAP = Stanford Network Analysis Project.
• The dataset we use includes friendship
relations between friends of given 10
Facebook users (so-called ego networks).

• This makes the dataset relatively small.
• All data is of course anonymized.

Dataset

• In our examples, we are going to use the
SNAP dataset.

• SNAP = Stanford Network Analysis Project.
• The dataset we use includes friendship
relations between friends of given 10
Facebook users (so-called ego networks).

• This makes the dataset relatively small.

• All data is of course anonymized.

Dataset

• In our examples, we are going to use the
SNAP dataset.

• SNAP = Stanford Network Analysis Project.
• The dataset we use includes friendship
relations between friends of given 10
Facebook users (so-called ego networks).

• This makes the dataset relatively small.
• All data is of course anonymized.

NetworkX

• NetworkX is a Python library for graph
analysis and visualization.

• Free software, released under BSD-new
license.

• Capable of handling big graphs (real-world
datasets): 10M nodes / 100M edges and
more.

• Highly portable and scalable.

NetworkX

• NetworkX is a Python library for graph
analysis and visualization.

• Free software, released under BSD-new
license.

• Capable of handling big graphs (real-world
datasets): 10M nodes / 100M edges and
more.

• Highly portable and scalable.

NetworkX

• NetworkX is a Python library for graph
analysis and visualization.

• Free software, released under BSD-new
license.

• Capable of handling big graphs (real-world
datasets): 10M nodes / 100M edges and
more.

• Highly portable and scalable.

NetworkX

• NetworkX is a Python library for graph
analysis and visualization.

• Free software, released under BSD-new
license.

• Capable of handling big graphs (real-world
datasets): 10M nodes / 100M edges and
more.

• Highly portable and scalable.

Getting NetworkX
• NetworkX, along with libraries necessary
for visualization, can be installed with pip:

pip install networkx
pip install matplotlib
pip install scipy

• NetworkX is then imported:

import networkx as nx

• We’ve renamed networkx to nx for
convenience.

Getting NetworkX
• NetworkX, along with libraries necessary
for visualization, can be installed with pip:

pip install networkx
pip install matplotlib
pip install scipy

• NetworkX is then imported:

import networkx as nx

• We’ve renamed networkx to nx for
convenience.

Getting NetworkX
• NetworkX, along with libraries necessary
for visualization, can be installed with pip:

pip install networkx
pip install matplotlib
pip install scipy

• NetworkX is then imported:

import networkx as nx

• We’ve renamed networkx to nx for
convenience.

Defining a Graph: Manual
• In NetworkX, one can define a graph
manually, by adding edges one by one.

mygraph = nx.Graph()

mygraph.add_edge('A','B')
mygraph.add_edge('B','C')
mygraph.add_edge('C','A')
mygraph.add_edge('B','D')

• Vertices can be of arbitrary type (strings,
numbers, ...).

Defining a Graph: Manual
• In NetworkX, one can define a graph
manually, by adding edges one by one.

mygraph = nx.Graph()

mygraph.add_edge('A','B')
mygraph.add_edge('B','C')
mygraph.add_edge('C','A')
mygraph.add_edge('B','D')

• Vertices can be of arbitrary type (strings,
numbers, ...).

Other Types of Graphs
• NetworkX can also handle directed graphs,
multigraphs etc.

• For a directed graph, use nx.DiGraph
instead of nx.Graph .

• Graphs in NetworkX can also be weighted.
• In a weighted graph, each edge receives a
number called its weight.

• E.g., time (or cost) of driving along a road.
• Weight is added just as an optional
parameter to add_edge :
mygraph.add_edge('A','B', weight=6)

Other Types of Graphs
• NetworkX can also handle directed graphs,
multigraphs etc.

• For a directed graph, use nx.DiGraph
instead of nx.Graph .

• Graphs in NetworkX can also be weighted.
• In a weighted graph, each edge receives a
number called its weight.

• E.g., time (or cost) of driving along a road.
• Weight is added just as an optional
parameter to add_edge :
mygraph.add_edge('A','B', weight=6)

Other Types of Graphs
• NetworkX can also handle directed graphs,
multigraphs etc.

• For a directed graph, use nx.DiGraph
instead of nx.Graph .

• Graphs in NetworkX can also be weighted.

• In a weighted graph, each edge receives a
number called its weight.

• E.g., time (or cost) of driving along a road.
• Weight is added just as an optional
parameter to add_edge :
mygraph.add_edge('A','B', weight=6)

Other Types of Graphs
• NetworkX can also handle directed graphs,
multigraphs etc.

• For a directed graph, use nx.DiGraph
instead of nx.Graph .

• Graphs in NetworkX can also be weighted.
• In a weighted graph, each edge receives a
number called its weight.

• E.g., time (or cost) of driving along a road.
• Weight is added just as an optional
parameter to add_edge :
mygraph.add_edge('A','B', weight=6)

Other Types of Graphs
• NetworkX can also handle directed graphs,
multigraphs etc.

• For a directed graph, use nx.DiGraph
instead of nx.Graph .

• Graphs in NetworkX can also be weighted.
• In a weighted graph, each edge receives a
number called its weight.

• E.g., time (or cost) of driving along a road.

• Weight is added just as an optional
parameter to add_edge :
mygraph.add_edge('A','B', weight=6)

Other Types of Graphs
• NetworkX can also handle directed graphs,
multigraphs etc.

• For a directed graph, use nx.DiGraph
instead of nx.Graph .

• Graphs in NetworkX can also be weighted.
• In a weighted graph, each edge receives a
number called its weight.

• E.g., time (or cost) of driving along a road.
• Weight is added just as an optional
parameter to add_edge :
mygraph.add_edge('A','B', weight=6)

Reading a Graph from File

• NetworkX is also capable of reading graphs
from files (datasets).

• In our example, we use SNAP’s Facebook
dataset (10 ego networks combined).

• In the file facebook_combined.txt one
finds the list of edges as pairs of numbers
(vertices are numbered).

• The data gets imported by the
nx.read_edgelist method.

Reading a Graph from File

• NetworkX is also capable of reading graphs
from files (datasets).

• In our example, we use SNAP’s Facebook
dataset (10 ego networks combined).

• In the file facebook_combined.txt one
finds the list of edges as pairs of numbers
(vertices are numbered).

• The data gets imported by the
nx.read_edgelist method.

Reading a Graph from File

• NetworkX is also capable of reading graphs
from files (datasets).

• In our example, we use SNAP’s Facebook
dataset (10 ego networks combined).

• In the file facebook_combined.txt one
finds the list of edges as pairs of numbers
(vertices are numbered).

• The data gets imported by the
nx.read_edgelist method.

Reading a Graph from File

• NetworkX is also capable of reading graphs
from files (datasets).

• In our example, we use SNAP’s Facebook
dataset (10 ego networks combined).

• In the file facebook_combined.txt one
finds the list of edges as pairs of numbers
(vertices are numbered).

• The data gets imported by the
nx.read_edgelist method.

Visualizing Graphs

• Graphs are abstract objects, but they have
nice geometric representations.

• In many cases, it is very helpful to see how
the graph looks like.

• Rendering an abstract graph to a picture is
called visualization.

• NetworkX is capable of visualizing graphs,
both in 2D and 3D.

Visualizing Graphs

• Graphs are abstract objects, but they have
nice geometric representations.

• In many cases, it is very helpful to see how
the graph looks like.

• Rendering an abstract graph to a picture is
called visualization.

• NetworkX is capable of visualizing graphs,
both in 2D and 3D.

Visualizing Graphs

• Graphs are abstract objects, but they have
nice geometric representations.

• In many cases, it is very helpful to see how
the graph looks like.

• Rendering an abstract graph to a picture is
called visualization.

• NetworkX is capable of visualizing graphs,
both in 2D and 3D.

Visualizing Graphs

• Graphs are abstract objects, but they have
nice geometric representations.

• In many cases, it is very helpful to see how
the graph looks like.

• Rendering an abstract graph to a picture is
called visualization.

• NetworkX is capable of visualizing graphs,
both in 2D and 3D.

Visualization: Small Example

• NetworkX visualizes graphs via Matplotlib
(a Python library for plotting).

• The method is called
nx.draw_networkx :
nx.draw_networkx(mygraph)
matplotlib.pyplot.savefig("mygraph.png")

Visualization: Small Example

• NetworkX visualizes graphs via Matplotlib
(a Python library for plotting).

• The method is called
nx.draw_networkx :
nx.draw_networkx(mygraph)
matplotlib.pyplot.savefig("mygraph.png")

Visualization: Small Example

NetworkX output

Visualization: Small Example
This is how a directed graph is visualized. Two
opposite edges between B and C are drawn as
one edge with two arrows.

NetworkX output

Visualization of Real Data
• We remove labels, because there are too
many vertices:
nx.draw_networkx(fb_gr, with_labels=False);

• Visualization makes clustering visible:

NetworkX output

Visualization of Real Data
• We remove labels, because there are too
many vertices:
nx.draw_networkx(fb_gr, with_labels=False);

• Visualization makes clustering visible:

NetworkX output

Some Graphs Tend to Cluster

• Social network graph: vertices = users,
edges = friendship relations.

• The probability, for two random vertices, to
be connected, is generally quite low.

• However, if Alex is a friend with Bob and
Carl, a friendship relation between Bob and
Carl becomes much more probable.

Some Graphs Tend to Cluster

• Social network graph: vertices = users,
edges = friendship relations.

• The probability, for two random vertices, to
be connected, is generally quite low.

• However, if Alex is a friend with Bob and
Carl, a friendship relation between Bob and
Carl becomes much more probable.

Some Graphs Tend to Cluster

• Social network graph: vertices = users,
edges = friendship relations.

• The probability, for two random vertices, to
be connected, is generally quite low.

• However, if Alex is a friend with Bob and
Carl, a friendship relation between Bob and
Carl becomes much more probable.

Some Graphs Tend to Cluster
• Social network graph: vertices = users,
edges = friendship relations.

• The probability, for two random vertices, to
be connected, is generally quite low.

• However, if Alex is a friend with Bob and
Carl, a friendship relation between Bob and
Carl becomes much more probable.

A

B

C

Some Graphs Tend to Cluster
• Social network graph: vertices = users,
edges = friendship relations.

• The probability, for two random vertices, to
be connected, is generally quite low.

• However, if Alex is a friend with Bob and
Carl, a friendship relation between Bob and
Carl becomes much more probable.

A

B

C

Global Clustering Coefficient

• One can measure clustering of a graph as a
whole using the global clustering
coefficient.

• A triplet is a pair of edges going from one
vertex 𝐴:

A

B

C

Global Clustering Coefficient

• One can measure clustering of a graph as a
whole using the global clustering
coefficient.

• A triplet is a pair of edges going from one
vertex 𝐴:

A

B

C

Global Clustering Coefficient

• A triangle is a triple of interconnected
vertices:

A

B

C

• 𝐺𝐶𝐶(𝒢) = 3 ⋅ (number of triangles)
number of triplets .

Global Clustering Coefficient

• A triangle is a triple of interconnected
vertices:

A

B

C

• 𝐺𝐶𝐶(𝒢) = 3 ⋅ (number of triangles)
number of triplets .

Global Clustering Coefficient

• 𝐺𝐶𝐶(𝒢) = 3 ⋅ (number of triangles)
number of triplets .

• Why multiply by 3?
• Answer: each triangle includes three
triplets.

• Thus, the GCC is the probability for a
random triplet A, B, C in 𝒢 to be closed
(that is, 𝐵 and 𝐶 connected).

Global Clustering Coefficient

• 𝐺𝐶𝐶(𝒢) = 3 ⋅ (number of triangles)
number of triplets .

• Why multiply by 3?

• Answer: each triangle includes three
triplets.

• Thus, the GCC is the probability for a
random triplet A, B, C in 𝒢 to be closed
(that is, 𝐵 and 𝐶 connected).

Global Clustering Coefficient

• 𝐺𝐶𝐶(𝒢) = 3 ⋅ (number of triangles)
number of triplets .

• Why multiply by 3?
• Answer: each triangle includes three
triplets.

• Thus, the GCC is the probability for a
random triplet A, B, C in 𝒢 to be closed
(that is, 𝐵 and 𝐶 connected).

Global Clustering Coefficient

• 𝐺𝐶𝐶(𝒢) = 3 ⋅ (number of triangles)
number of triplets .

• Why multiply by 3?
• Answer: each triangle includes three
triplets.

• Thus, the GCC is the probability for a
random triplet A, B, C in 𝒢 to be closed
(that is, 𝐵 and 𝐶 connected).

Local Clustering Coefficient
• In the local clustering coefficient, we count
only triplets with a given A as the central
vertex.

• Suppose, the degree of A is 𝑘.
• The total number of triplets with A as the
central is 𝑘 ⋅ (𝑘 − 1)/2.

• 𝐿𝐶𝐶(𝐴) is the ratio
number of pairs (B, C) which form a triangle with A

𝑘 ⋅ (𝑘 − 1)/2
• If A is an isolated vertex (degree = 0), then

𝐿𝐶𝐶(𝐴) is undefined (zero-by-zero
division).

Local Clustering Coefficient
• In the local clustering coefficient, we count
only triplets with a given A as the central
vertex.

• Suppose, the degree of A is 𝑘.

• The total number of triplets with A as the
central is 𝑘 ⋅ (𝑘 − 1)/2.

• 𝐿𝐶𝐶(𝐴) is the ratio
number of pairs (B, C) which form a triangle with A

𝑘 ⋅ (𝑘 − 1)/2
• If A is an isolated vertex (degree = 0), then

𝐿𝐶𝐶(𝐴) is undefined (zero-by-zero
division).

Local Clustering Coefficient
• In the local clustering coefficient, we count
only triplets with a given A as the central
vertex.

• Suppose, the degree of A is 𝑘.
• The total number of triplets with A as the
central is 𝑘 ⋅ (𝑘 − 1)/2.

• 𝐿𝐶𝐶(𝐴) is the ratio
number of pairs (B, C) which form a triangle with A

𝑘 ⋅ (𝑘 − 1)/2
• If A is an isolated vertex (degree = 0), then

𝐿𝐶𝐶(𝐴) is undefined (zero-by-zero
division).

Local Clustering Coefficient
• In the local clustering coefficient, we count
only triplets with a given A as the central
vertex.

• Suppose, the degree of A is 𝑘.
• The total number of triplets with A as the
central is 𝑘 ⋅ (𝑘 − 1)/2.

• 𝐿𝐶𝐶(𝐴) is the ratio
number of pairs (B, C) which form a triangle with A

𝑘 ⋅ (𝑘 − 1)/2

• If A is an isolated vertex (degree = 0), then
𝐿𝐶𝐶(𝐴) is undefined (zero-by-zero
division).

Local Clustering Coefficient
• In the local clustering coefficient, we count
only triplets with a given A as the central
vertex.

• Suppose, the degree of A is 𝑘.
• The total number of triplets with A as the
central is 𝑘 ⋅ (𝑘 − 1)/2.

• 𝐿𝐶𝐶(𝐴) is the ratio
2 ⋅ (number of pairs (B, C) which form a triangle with A)

𝑘 ⋅ (𝑘 − 1)

• If A is an isolated vertex (degree = 0), then
𝐿𝐶𝐶(𝐴) is undefined (zero-by-zero
division).

Local Clustering Coefficient
• In the local clustering coefficient, we count
only triplets with a given A as the central
vertex.

• Suppose, the degree of A is 𝑘.
• The total number of triplets with A as the
central is 𝑘 ⋅ (𝑘 − 1)/2.

• 𝐿𝐶𝐶(𝐴) is the ratio
2 ⋅ (number of pairs (B, C) which form a triangle with A)

𝑘 ⋅ (𝑘 − 1)
• If A is an isolated vertex (degree = 0), then

𝐿𝐶𝐶(𝐴) is undefined (zero-by-zero
division).

Local Clustering Coefficient

A

In this example, 𝐿𝐶𝐶(𝐴) = 2 ⋅ 4
4 ⋅ 3 = 2

3 .

Local Clustering Coefficient

A

In this example, 𝐿𝐶𝐶(𝐴) = 2 ⋅ 4
4 ⋅ 3 = 2

3 .

Graph Parameters in NetworkX
• NetworkX provides a convenient interface
to algorithms computing graph parameters.

• Global parameters of the graph are just
functions of it.

• For example, if we wish to calculate the
average clustering coefficient (the average
value of local clustering coefficients), we
just run

av_clust = nx.average_clustering(fb_gr)

Graph Parameters in NetworkX
• NetworkX provides a convenient interface
to algorithms computing graph parameters.

• Global parameters of the graph are just
functions of it.

• For example, if we wish to calculate the
average clustering coefficient (the average
value of local clustering coefficients), we
just run

av_clust = nx.average_clustering(fb_gr)

Graph Parameters in NetworkX
• NetworkX provides a convenient interface
to algorithms computing graph parameters.

• Global parameters of the graph are just
functions of it.

• For example, if we wish to calculate the
average clustering coefficient (the average
value of local clustering coefficients), we
just run

av_clust = nx.average_clustering(fb_gr)

Clustering: Real vs Random
import networkx as nx
from random import random

G_fb = nx.read_edgelist("facebook_combined.txt")

av_clust_coeff = nx.average_clustering(G_fb)
print ("acc = "+str(av_clust_coeff))

edges = G_fb.number_of_edges()
nodes = G_fb.number_of_nodes()
max_edges = nodes*(nodes-1)/2
edge_probab = edges / max_edges
G_rand = nx.Graph();
k = nodes-1
for i in range(0,k) :

for j in range(0,i) :
if (random() <= edge_probab) :

G_rand.add_edge(i,j)

av_clust_coeff = nx.average_clustering(G_rand)
print("rgraph_acc = " + str(av_clust_coeff));

Clustering: Real vs Random
• This experiment yields the following
results:
acc = 0.6055467186200876
rgraph_acc = 0.010822469487992627

• This shows that (unsurprisingly) the social
network tends to cluster more than the
random graph (with the same probability of
edge).

• Thus, one has to be cautious with
stochastic modelling of social graphs.

Clustering: Real vs Random
• This experiment yields the following
results:
acc = 0.6055467186200876
rgraph_acc = 0.010822469487992627

• This shows that (unsurprisingly) the social
network tends to cluster more than the
random graph (with the same probability of
edge).

• Thus, one has to be cautious with
stochastic modelling of social graphs.

Clustering: Real vs Random
• This experiment yields the following
results:
acc = 0.6055467186200876
rgraph_acc = 0.010822469487992627

• This shows that (unsurprisingly) the social
network tends to cluster more than the
random graph (with the same probability of
edge).

• Thus, one has to be cautious with
stochastic modelling of social graphs.

Graph Parameters in NetworkX
• Suppose we want to check “six
handshakes.”

• That is, we have to calculate the diameter
of our graph:

diam = nx.diameter(fb_gr)

• The calculation takes quite long... and on
our data it yields 8.

• This is quite a good result, recalling that we
have just a fusion of 10 ego nets, not the
full Facebook graph.

Graph Parameters in NetworkX
• Suppose we want to check “six
handshakes.”

• That is, we have to calculate the diameter
of our graph:

diam = nx.diameter(fb_gr)

• The calculation takes quite long... and on
our data it yields 8.

• This is quite a good result, recalling that we
have just a fusion of 10 ego nets, not the
full Facebook graph.

Graph Parameters in NetworkX
• Suppose we want to check “six
handshakes.”

• That is, we have to calculate the diameter
of our graph:

diam = nx.diameter(fb_gr)

• The calculation takes quite long... and on
our data it yields 8.

• This is quite a good result, recalling that we
have just a fusion of 10 ego nets, not the
full Facebook graph.

Graph Parameters in NetworkX
• Suppose we want to check “six
handshakes.”

• That is, we have to calculate the diameter
of our graph:

diam = nx.diameter(fb_gr)

• The calculation takes quite long... and on
our data it yields 8.

• This is quite a good result, recalling that we
have just a fusion of 10 ego nets, not the
full Facebook graph.

Distances
• By definition, the distance between two
vertices is the length of the shortest path
connecting them.

• This can be computed by
nx.shortest_path_length

• In directed graphs, the path should also be
directed—thus, sometimes 𝑑(𝑎, 𝑏) ≠ 𝑑(𝑏, 𝑎).

• Caveat! If there is no path, NetworkX
throws an exception.

• To be on the safe side, use nx.has_path
before.

Distances
• By definition, the distance between two
vertices is the length of the shortest path
connecting them.

• This can be computed by
nx.shortest_path_length

• In directed graphs, the path should also be
directed—thus, sometimes 𝑑(𝑎, 𝑏) ≠ 𝑑(𝑏, 𝑎).

• Caveat! If there is no path, NetworkX
throws an exception.

• To be on the safe side, use nx.has_path
before.

Distances
• By definition, the distance between two
vertices is the length of the shortest path
connecting them.

• This can be computed by
nx.shortest_path_length

• In directed graphs, the path should also be
directed—thus, sometimes 𝑑(𝑎, 𝑏) ≠ 𝑑(𝑏, 𝑎).

• Caveat! If there is no path, NetworkX
throws an exception.

• To be on the safe side, use nx.has_path
before.

Distances
• By definition, the distance between two
vertices is the length of the shortest path
connecting them.

• This can be computed by
nx.shortest_path_length

• In directed graphs, the path should also be
directed—thus, sometimes 𝑑(𝑎, 𝑏) ≠ 𝑑(𝑏, 𝑎).

• Caveat! If there is no path, NetworkX
throws an exception.

• To be on the safe side, use nx.has_path
before.

Distances
• By definition, the distance between two
vertices is the length of the shortest path
connecting them.

• This can be computed by
nx.shortest_path_length

• In directed graphs, the path should also be
directed—thus, sometimes 𝑑(𝑎, 𝑏) ≠ 𝑑(𝑏, 𝑎).

• Caveat! If there is no path, NetworkX
throws an exception.

• To be on the safe side, use nx.has_path
before.

Preparing for HW 3

• More information is available in NetworkX
documentation.

• Please consult it when accomplishing the
programming task.

• Good luck!

Preparing for HW 3

• More information is available in NetworkX
documentation.

• Please consult it when accomplishing the
programming task.

• Good luck!

Preparing for HW 3

• More information is available in NetworkX
documentation.

• Please consult it when accomplishing the
programming task.

• Good luck!

Graph and Subgraph Isomorphism

• We are going to discuss algorithmic
problems connected to isomorphism and
subgraphs.

• First, let us recall the notion of isomorphic
graphs.

Graph and Subgraph Isomorphism

• We are going to discuss algorithmic
problems connected to isomorphism and
subgraphs.

• First, let us recall the notion of isomorphic
graphs.

Graph Isomorphism
Sometimes graphs look different, but
essentially are the same...

Here both graphs can be described as “a triangle and a
quadrangle sharing a common edge.”

Graph Isomorphism
Sometimes graphs look different, but
essentially are the same...

Here both graphs can be described as “a triangle and a
quadrangle sharing a common edge.”

Graph Isomorphism
Sometimes graphs look different, but
essentially are the same...

Here both graphs can be described as “a triangle and a
quadrangle sharing a common edge.”

Graph Isomorphism

... and sometimes similarly looking graphs are
different.

Graph Isomorphism

... and sometimes similarly looking graphs are
different.

Graph Isomorphism
Isomorphic Graphs
Two graphs, 𝒢 and ℋ, are isomorphic, if they
have the same number 𝑛 of vertices and
vertices of each graph can be enumerated by
numbers from 1 to 𝑛, so that vertices with
numbers 𝑖 and 𝑗 are connected in 𝒢 if and
only if vertices with these numbers are
connected in ℋ.

Isomorphic graphs can be seen as different
representations of the same graph.

Graph Isomorphism
Isomorphic Graphs
Two graphs, 𝒢 and ℋ, are isomorphic, if they
have the same number 𝑛 of vertices and
vertices of each graph can be enumerated by
numbers from 1 to 𝑛, so that vertices with
numbers 𝑖 and 𝑗 are connected in 𝒢 if and
only if vertices with these numbers are
connected in ℋ.

Isomorphic graphs can be seen as different
representations of the same graph.

Isomorphic Graphs

𝒢 ℋ

1

2 3

4

5

3 4

2
1

5

Isomorphic Graphs

𝒢 ℋ

1

2 3

4

5

3 4

2
1

5

Isomorphic Graphs

𝒢 ℋ

1

2 3

4

5

3 4

2
1

5

Isomorphism
The isomorphism itself is the correspondence
between vertices with the same number.

1

2 3

4

5
3 4

2
1

5

Isomorphism
The isomorphism itself is the correspondence
between vertices with the same number.

1

2 3

4

5
3 4

2
1

5

Isomorphism
The isomorphism itself is the correspondence
between vertices with the same number.

1

2 3

4

5
3 4

2
1

5

Graph Isomorphism Algorithmically

• What is the algorithmic complexity of
checking whether two given graphs, 𝒢 and
ℋ, are isomorphic?

• First, this problem is obviously in NP: one
can just non-deterministically guess the
isomorphism.

• However, graph isomorphism is a quite rare
species of NP problem: we know neither
that it is NP-complete, nor that it belongs
to P.

Graph Isomorphism Algorithmically

• What is the algorithmic complexity of
checking whether two given graphs, 𝒢 and
ℋ, are isomorphic?

• First, this problem is obviously in NP: one
can just non-deterministically guess the
isomorphism.

• However, graph isomorphism is a quite rare
species of NP problem: we know neither
that it is NP-complete, nor that it belongs
to P.

Graph Isomorphism Algorithmically

• What is the algorithmic complexity of
checking whether two given graphs, 𝒢 and
ℋ, are isomorphic?

• First, this problem is obviously in NP: one
can just non-deterministically guess the
isomorphism.

• However, graph isomorphism is a quite rare
species of NP problem: we know neither
that it is NP-complete, nor that it belongs
to P.

Subgraphs
• A subgraph is a part of a graph which is
obtained by taking a subset of vertices and
a subset of edges.

• The vertex subset should cover the edge
subset.

Subgraphs
• A subgraph is a part of a graph which is
obtained by taking a subset of vertices and
a subset of edges.

• The vertex subset should cover the edge
subset.

Subgraphs
• A subgraph is a part of a graph which is
obtained by taking a subset of vertices and
a subset of edges.

• The vertex subset should cover the edge
subset.

Subgraphs
• A subgraph is a part of a graph which is
obtained by taking a subset of vertices and
a subset of edges.

• The vertex subset should cover the edge
subset.

Subgraphs

• An induced subgraph includes all the
edges of the original graph, whose
endpoints are in the vertex subset.

• A spanning subgraph includes all vertices
of the original graph (but maybe not all
edges).

Subgraphs

• An induced subgraph includes all the
edges of the original graph, whose
endpoints are in the vertex subset.

• A spanning subgraph includes all vertices
of the original graph (but maybe not all
edges).

Subgraphs

a

b c

d

e
h

g

spanning

Subgraphs

a

b c

d

e
h

g

induced

Subgraphs

a

b c

d

e
h

g

neither

Subgraph Isomorphism Problem

• The (algorithmic) problem is as follows:
given a “big” graph ℋ and a “small” graph
𝒢0, determine whether there exists an
induced subgraph in ℋ, which is
isomorphic to 𝒢0.

• There is also a variant of this problem
without requiring the subgraph to be an
induced one.

Subgraph Isomorphism Problem

• The (algorithmic) problem is as follows:
given a “big” graph ℋ and a “small” graph
𝒢0, determine whether there exists an
induced subgraph in ℋ, which is
isomorphic to 𝒢0.

• There is also a variant of this problem
without requiring the subgraph to be an
induced one.

Subgraph Isomorphism Problem

• The subgraph isomorphism problem is a
problem of pattern matching / search, but
for structures rather than words.

• One asks for existence (or to find) a given
small pattern 𝒢0 in a huge structure ℋ.

• Applications: chem- / bioinformatics,
graph mining (structure mining), etc

• The subgraph isomorphism problem is
NP-complete (in both variants).

Subgraph Isomorphism Problem

• The subgraph isomorphism problem is a
problem of pattern matching / search, but
for structures rather than words.

• One asks for existence (or to find) a given
small pattern 𝒢0 in a huge structure ℋ.

• Applications: chem- / bioinformatics,
graph mining (structure mining), etc

• The subgraph isomorphism problem is
NP-complete (in both variants).

Subgraph Isomorphism Problem

• The subgraph isomorphism problem is a
problem of pattern matching / search, but
for structures rather than words.

• One asks for existence (or to find) a given
small pattern 𝒢0 in a huge structure ℋ.

• Applications: chem- / bioinformatics,
graph mining (structure mining), etc

• The subgraph isomorphism problem is
NP-complete (in both variants).

Subgraph Isomorphism Problem

• The subgraph isomorphism problem is a
problem of pattern matching / search, but
for structures rather than words.

• One asks for existence (or to find) a given
small pattern 𝒢0 in a huge structure ℋ.

• Applications: chem- / bioinformatics,
graph mining (structure mining), etc

• The subgraph isomorphism problem is
NP-complete (in both variants).

Special Subgraphs
• A clique is a complete subgraph.

• Example of a clique on 4 vertices:

• Clique in social network graph = group of
users who are friends with each other.

Special Subgraphs
• A clique is a complete subgraph.
• Example of a clique on 4 vertices:

• Clique in social network graph = group of
users who are friends with each other.

Special Subgraphs
• A clique is a complete subgraph.
• Example of a clique on 4 vertices:

• Clique in social network graph = group of
users who are friends with each other.

Special Subgraphs
• A clique is a complete subgraph.
• Example of a clique on 4 vertices:

• Clique in social network graph = group of
users who are friends with each other.

Independent Sets
• An independent set is an empty induced
subgraph.

• No pair of vertices from an independent
set could be connected.

• Example: independent set of 4 vertices.

Independent Sets
• An independent set is an empty induced
subgraph.

• No pair of vertices from an independent
set could be connected.

• Example: independent set of 4 vertices.

Independent Sets
• An independent set is an empty induced
subgraph.

• No pair of vertices from an independent
set could be connected.

• Example: independent set of 4 vertices.

NP-Completeness of INDSET

• INDSET, the problem of existence, in a given
graph 𝒢, an independent set of a given size
𝑘, is NP-complete.

• Input: (𝐺, 𝑘).
• This follows from the following reduction:
CNF-SAT ≤𝑃

𝑚 INDSET.
• Given a CNF 𝐴, we construct (𝒢, 𝑘) such 𝒢
has an independent set of 𝑘 vertices if and
only if 𝐴 is satisfiable.

NP-Completeness of INDSET

• INDSET, the problem of existence, in a given
graph 𝒢, an independent set of a given size
𝑘, is NP-complete.

• Input: (𝐺, 𝑘).

• This follows from the following reduction:
CNF-SAT ≤𝑃

𝑚 INDSET.
• Given a CNF 𝐴, we construct (𝒢, 𝑘) such 𝒢
has an independent set of 𝑘 vertices if and
only if 𝐴 is satisfiable.

NP-Completeness of INDSET

• INDSET, the problem of existence, in a given
graph 𝒢, an independent set of a given size
𝑘, is NP-complete.

• Input: (𝐺, 𝑘).
• This follows from the following reduction:
CNF-SAT ≤𝑃

𝑚 INDSET.

• Given a CNF 𝐴, we construct (𝒢, 𝑘) such 𝒢
has an independent set of 𝑘 vertices if and
only if 𝐴 is satisfiable.

NP-Completeness of INDSET

• INDSET, the problem of existence, in a given
graph 𝒢, an independent set of a given size
𝑘, is NP-complete.

• Input: (𝐺, 𝑘).
• This follows from the following reduction:
CNF-SAT ≤𝑃

𝑚 INDSET.
• Given a CNF 𝐴, we construct (𝒢, 𝑘) such 𝒢
has an independent set of 𝑘 vertices if and
only if 𝐴 is satisfiable.

Reducing CNF-SAT to INDSET
𝐴 = (𝑞 ∨ 𝑝) ∧ (𝑝 ∨ 𝑞 ∨ 𝑟) ∧ (𝑞 ∨ 𝑟 ∨ 𝑝) ∧ (𝑝 ∨ 𝑟).

𝑞

𝑝

𝑝
𝑞

𝑟

𝑞
𝑟

𝑝

𝑝

𝑟

𝑘 = 4 𝑞 = 1, 𝑝 = 𝑟 = 0

Reducing CNF-SAT to INDSET
𝐴 = (𝑞 ∨ 𝑝) ∧ (𝑝 ∨ 𝑞 ∨ 𝑟) ∧ (𝑞 ∨ 𝑟 ∨ 𝑝) ∧ (𝑝 ∨ 𝑟).

𝑞

𝑝

𝑝
𝑞

𝑟

𝑞
𝑟

𝑝

𝑝

𝑟

𝑘 = 4 𝑞 = 1, 𝑝 = 𝑟 = 0

Reducing CNF-SAT to INDSET
𝐴 = (𝑞 ∨ 𝑝) ∧ (𝑝 ∨ 𝑞 ∨ 𝑟) ∧ (𝑞 ∨ 𝑟 ∨ 𝑝) ∧ (𝑝 ∨ 𝑟).

𝑞

𝑝

𝑝
𝑞

𝑟

𝑞
𝑟

𝑝

𝑝

𝑟

𝑘 = 4 𝑞 = 1, 𝑝 = 𝑟 = 0

Reducing CNF-SAT to INDSET
𝐴 = (𝑞 ∨ 𝑝) ∧ (𝑝 ∨ 𝑞 ∨ 𝑟) ∧ (𝑞 ∨ 𝑟 ∨ 𝑝) ∧ (𝑝 ∨ 𝑟).

𝑞

𝑝

𝑝
𝑞

𝑟

𝑞
𝑟

𝑝

𝑝

𝑟

𝑘 = 4

𝑞 = 1, 𝑝 = 𝑟 = 0

Reducing CNF-SAT to INDSET
𝐴 = (𝑞 ∨ 𝑝) ∧ (𝑝 ∨ 𝑞 ∨ 𝑟) ∧ (𝑞 ∨ 𝑟 ∨ 𝑝) ∧ (𝑝 ∨ 𝑟).

𝑞

𝑝

𝑝
𝑞

𝑟

𝑞
𝑟

𝑝

𝑝

𝑟

𝑘 = 4

𝑞 = 1, 𝑝 = 𝑟 = 0

Reducing CNF-SAT to INDSET
𝐴 = (𝑞 ∨ 𝑝) ∧ (𝑝 ∨ 𝑞 ∨ 𝑟) ∧ (𝑞 ∨ 𝑟 ∨ 𝑝) ∧ (𝑝 ∨ 𝑟).

𝑞

𝑝

𝑝
𝑞

𝑟

𝑞
𝑟

𝑝

𝑝

𝑟

𝑘 = 4 𝑞 = 1, 𝑝 = 𝑟 = 0

Hamiltonian Paths
• Another famous NP-complete problem is
the existence of a Hamiltonian path, i.e., a
path which visits each vertex exactly once.

• This is also a subcase of subgraph
isomorphism: whether ℋ includes a
subgraph (not an induced one), which is a
chain of |𝑉 | vertices.

• In this course, we omit the proof of
NP-hardness for Hamiltonian path, but
next week we’ll sketch its applications to
genomics.

Hamiltonian Paths
• Another famous NP-complete problem is
the existence of a Hamiltonian path, i.e., a
path which visits each vertex exactly once.

• This is also a subcase of subgraph
isomorphism: whether ℋ includes a
subgraph (not an induced one), which is a
chain of |𝑉 | vertices.

• In this course, we omit the proof of
NP-hardness for Hamiltonian path, but
next week we’ll sketch its applications to
genomics.

Hamiltonian Paths
• Another famous NP-complete problem is
the existence of a Hamiltonian path, i.e., a
path which visits each vertex exactly once.

• This is also a subcase of subgraph
isomorphism: whether ℋ includes a
subgraph (not an induced one), which is a
chain of |𝑉 | vertices.

• In this course, we omit the proof of
NP-hardness for Hamiltonian path, but
next week we’ll sketch its applications to
genomics.

