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Social Network Analysis

- The study of social structures using graph
theory is called social network analysis
(SNA).

- Thus, SNA is an area on the border of
discrete maths and sociology.

- Vertices in social network graphs represent
actors: people, social entities etc.

- Edges (also called ties or links) represent
various relations between actors.

- The standard example is the friendship
relation in social networks.
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- Graph parameters of social network graphs
are important for sociologists studying
these networks.

- We are going to get acquainted with
specialized software for calculating them.
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- Notice how some parameters of the graph
behave specifically in the social network
case (if compared to a random graph, for
example).

- We shall see that the so called clustering
coefficients tend to be quite high.

- This reflects the fact that friends of one
person are much more likely to be friends
also.
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Parameters of Social Network Graphs

- On the other hand, being highly
clusterized, the social network happens to
be tightly connected.

- The well-known theory of six degrees of
separation (“six handshakes”) claims that
any two people in the world are no more
than six social connections from each
other.

- In graph-theoretic terms, this means that
the diameter of the social connections
graph should be < 6.
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Dataset

- In our examples, we are going to use the
SNAP dataset.

- SNAP = Stanford Network Analysis Project.

- The dataset we use includes friendship
relations between friends of given 10
Facebook users (so-called ego networks).

- This makes the dataset relatively small.
- All data is of course anonymized.
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NetworkX

- NetworkX is a Python library for graph
analysis and visualization.

- Free software, released under BSD-new
license.

- Capable of handling big graphs (real-world
datasets): 10M nodes / 100M edges and
more.

- Highly portable and scalable.
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Getting NetworkX

- NetworkX, along with libraries necessary
for visualization, can be installed with pip:

- NetworkX is then imported:

- We've renamed networkx to nx for
convenience.
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Defining a Graph: Manual

- In NetworkX, one can define a graph
manually, by adding edges one by one.

- Vertices can be of arbitrary type (strings,
numbers, ...).
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Other Types of Graphs

- NetworkX can also handle directed graphs,
multigraphs etc.

- For a directed graph, use ‘nx.DiGraph
Instead of nx.Graph .

- Graphs in NetworkX can also be weighted.

- In a weighted graph, each edge receives a
number called its weight.

- E.g, time (or cost) of driving along a road.
- Weight is added just as an optional

parameter to add_edge::

mygraph.add_edge('A','B', weight=6)
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Reading a Graph from File

- NetworkX is also capable of reading graphs
from files (datasets).

- In our example, we use SNAP's Facebook
dataset (10 ego networks combined).

- In the file facebook combined.txt one
finds the list of edges as pairs of numbers
(vertices are numbered).

- The data gets imported by the
nx.read_edgelist method.
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Visualizing Graphs

- Graphs are abstract objects, but they have
nice geometric representations.

- In many cases, it is very helpful to see how
the graph looks like.

- Rendering an abstract graph to a picture is
called visualization.

- NetworkX is capable of visualizing graphs,
both in 2D and 3D.
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- NetworkX visualizes graphs via Matplotlib

(a Python library for plotting).
- The method is called
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Visualization: Small Example

This is how a directed graph is visualized. Two
opposite edges between B and C are drawn as
one edge with two arrows.

NetworkX output
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Visualization of Real Data

-+ We remove labels, because there are too
many vertices:

nx.draw_networkx(fb_gr, with_labels=False);

- Visualization makes clustering visible:

NetworkX output
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- Social network graph: vertices = users,
edges = friendship relations.

- The probability, for two random vertices, to
be connected, is generally quite low.

- However, if Alex is a friend with Bob and
Carl, a friendship relation between Bob and
Carl becomes much more probable.
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- One can measure clustering of a graph as a
whole using the global clustering
coefficient.

- Atriplet is a pair of edges going from one
vertex A:
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Global Clustering Coefficient

. _ 3+ (number of triangles)
Gees) = number of triplets

- Why multiply by 3?

- Answer: each triangle includes three
triplets.

- Thus, the GCC is the probability for a
random triplet A, B, Cin G to be closed
(thatis, B and C connected).
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Local Clustering Coefficient

- In the local clustering coefficient, we count
only triplets with a given A as the central
vertex.

- Suppose, the degree of A is k.

- The total number of triplets with A as the
centralis k- (k—1)/2.

- LCC(A) is the ratio

2 - (number of pairs (B, C) which form a triangle with /
k- (k—1)
- If Ais an isolated vertex (degree = 0), then
LCO( ) is undefined (zero-by-zero

e e\
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Local Clustering Coefficient

A

)
W

In this example, LCC(A) =

S
o
el o



Graph Parameters in NetworkX

- NetworkX provides a convenient interface
to algorithms computing graph parameters.



Graph Parameters in NetworkX

- NetworkX provides a convenient interface
to algorithms computing graph parameters.

- Global parameters of the graph are just
functions of it.



Graph Parameters in NetworkX

- NetworkX provides a convenient interface
to algorithms computing graph parameters.

- Global parameters of the graph are just
functions of it.

- For example, if we wish to calculate the
average clustering coefficient (the average
value of local clustering coefficients), we

just run

av_clust = nx.average_clustering(fb_gr)
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Clustering: Real vs Random

- This experiment yields the following
results:

acc = 0.6055467186200876
rgraph_acc = 0.010822469487992627

- This shows that (unsurprisingly) the social
network tends to cluster more than the
random graph (with the same probability of
edge).

- Thus, one has to be cautious with
stochastic modelling of social graphs.
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Graph Parameters in NetworkX

- Suppose we want to check “six

handshakes.”
- That is, we have to calculate the diameter
of our graph:

diam = nx.diameter(fb_gr)

- The calculation takes quite long... and on
our data it yields 8.

- This is quite a good result, recalling that we
have just a fusion of 10 ego nets, not the
full Facebook graph.
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Distances

- By definition, the distance between two
vertices Is the length of the shortest path
connecting them.

- This can be computed by
nx.shortest_path_length

- In directed graphs, the path should also be
directed—thus, sometimes d(a, b) # d(b, a).

- Caveat! If there is no path, NetworkX
throws an exception.

- To be on the safe side, use nx.has_path
before.
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Preparing for HW 3

- More information is available in NetworkX
documentation.

- Please consult it when accomplishing the
programming task.

- Good luck!
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- We are going to discuss algorithmic

problems connected to isomorphism and
subgraphs.

- First, let us recall the notion of isomorphic
graphs.
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Graph Isomorphism

Sometimes graphs look different, but
essentially are the same...

Here both graphs can be described as “a triangle and a

quadrangle sharing a common edge”
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.. and sometimes similarly looking graphs are
different.
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Two graphs, G and 7, are isomorphic, if they
have the same number n of vertices and
vertices of each graph can be enumerated by
numbers from 1 to n, so that vertices with
numbers ¢ and j are connected in G if and
only if vertices with these numbers are
connected in 7.



Graph Isomorphism

Isomorphic Graphs

Two graphs, G and 7, are isomorphic, if they
have the same number n of vertices and
vertices of each graph can be enumerated by
numbers from 1 to n, so that vertices with
numbers ¢ and j are connected in G if and
only if vertices with these numbers are
connected in 7.

Isomorphic graphs can be seen as different
representations of the same graph.
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Graph Isomorphism Algorithmically

- What is the algorithmic complexity of
checking whether two given graphs, G and
J, are isomorphic?

- First, this problem is obviously in NP: one
can just non-deterministically guess the
isomorphism.

- However, graph isomorphism is a quite rare
species of NP problem: we know neither
that it is NP-complete, nor that it belongs
to P.
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Subgraphs

- An induced subgraph includes all the
edges of the original graph, whose
endpoints are in the vertex subset.

- A spanning subgraph includes all vertices

of the original graph (but maybe not all
edges).
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Subgraphs

neither
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Subgraph Isomorphism Problem

- The (algorithmic) problem is as follows:
given a “big” graph # and a “small” graph
G, determine whether there exists an
induced subgraph in ', which is
iIsomorphic to g,.

- There is also a variant of this problem
without requiring the subgraph to be an
induced one.
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Subgraph Isomorphism Problem

- The subgraph isomorphism problem is a
problem of pattern matching / search, but
for structures rather than words.

- One asks for existence (or to find) a given
small pattern G, in a huge structure .

- Applications: chem- / bioinformatics,
graph mining (structure mining), etc

- The subgraph isomorphism problem is
NP-complete (in both variants).
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Special Subgraphs

- A clique is a complete subgraph.
- Example of a clique on 4 vertices:

O—O

- Clique in social network graph = group of
users who are friends with each other.



Independent Sets

- An independent set is an empty induced
subgraph.



Independent Sets

- An independent set is an empty induced
subgraph.

- No pair of vertices from an independent
set could be connected.



Independent Sets

- An independent set is an empty induced
subgraph.

- No pair of vertices from an independent
set could be connected.

- Example: independent set of 4 vertices.
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NP-Completeness of INDSET

- INDSET, the problem of existence, in a given
graph G, an independent set of a given size
k, 1s NP-complete.

- Input: (G, k).
- This follows from the following reduction:
CNF-SAT <2 INDSET.
- Given a CNF A, we construct (G, k) such G
has an independent set of k vertices if and
only if A is satisfiable.
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Hamiltonian Paths

- Another famous NP-complete problem is
the existence of a Hamiltonian path, i.e, a
path which visits each vertex exactly once.

- This is also a subcase of subgraph
isomorphism: whether A includes a
subgraph (not an induced one), which is a
chain of |V| vertices.

- In this course, we omit the proof of
NP-hardness for Hamiltonian path, but
next week we'll sketch its applications to
genomics.



