
Beyond NP-Completeness

Stepan Kuznetsov

Discrete Math Bridging Course, HSE University



Euler and Hamiltonian Paths

• An Euler path in a (multi)graph is a path
which traverses each edge exactly once.

• A Hamiltonian path should traverse each
vertex exactly once.

• The two notions look similar, but there is a
complexity gap: finding an Euler path is
polynomial, while existence of a
Hamiltonian one is NP-complete.
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• Finding a Hamiltonian cycle, in general, is
hard.

• Finding a Euler cycle is easy (can be done
in polynomial time).

• What if, for a specific class of graphs, the
problem of finding a Hamiltonian cycle
could be reduced to the problem of finding
a Euler cycle?
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Line Graphs

• For a graph 𝐺, we define its line graph
𝐿(𝐺), as follows:

• vertices of 𝐿(𝐺) are edges of 𝐺;
• two vertices are connected in 𝐿(𝐺), if the
corresponding edges of 𝐺 have a common
end.
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• A Euler path in 𝐺 induces a Hamiltonian
path in 𝐿(𝐺).

• The converse, however, does not hold: in
𝐿(𝐺), there could be a Hamiltonian cycle,
which is not induced by a Euler cycle in 𝐺.
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Line Graphs and Paths

• And, of course, not every Hamiltonian
graph is a line graph of some other graph
𝐺.

• Nevertheless, in some practically important
cases representation of a given graph as
𝐿(𝐺) allows efficient construction of
Hamiltonian cycles.
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Directed Line Graphs
• The line graph 𝐿(𝐺) can be also defined for
the case of directed 𝐺.

• Vertices of 𝐿(𝐺) are directed edges of 𝐺,
and we connect ⟨𝑢, 𝑣⟩ with ⟨𝑣, 𝑤⟩, in the
given direction:

𝑢

𝑣

𝑤
• Again, a directed Euler path in 𝐺 induces a
directed Hamiltonian path in 𝐿(𝐺).
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Application: Genome and Its Fragments
• The genome is, roughly a string of letters A,
C, G, T (they encode nucleotides: adenine,
cytosine, guanine, thymine).

ACTAGCTGCC

• Consider the following model situation.
Experiment does not give us the complete
genome, but rather all its fragments of
length 3, in a random order:

TGC, CTA, GCT, AGC, ACT, GCC, TAG, CTG
• Our goal is to reassemble the genome.
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Reassembly as Hamiltonian Path

• It is easy to see that the reassembly
corresponds to a Hamiltonian path in the
overlap graph.

• In this graph, triplet 𝑢 is connected to
triplet 𝑣, if the last two letters of 𝑢 are the
first two letters of 𝑣:

CTA → TAG.
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Reassembly as Hamiltonian Path

• We reduced the reassembly problem to the
Hamiltonian path problem.

• Unfortunately, the latter is hard.
• It would be much better if we could use
Euler path instead.
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De Bruijn Graph

• Fortunately, the overlap graph is 𝐿(𝐺) for
some other graph 𝐺:

ACT

CTA

TAG

CT TA

• After identifying vertices with the same
annotation in 𝐺 and adding AC and CC
(start and end), we get de Bruijn graph.
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De Bruijn Graph

A Euler path in de Bruijn graph induces a
Hamiltonian path in overlap graph.
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• This is an example how discovering the
inner structure of a graph helps making
problems algorithmically simpler.

• De Bruijn graph is used in real-world
genome assemblers.
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The NP Class
• Let us recall the NP class.

• Today we shall use Definition 2, with hints.
• Denote the decision problem by 𝐴(𝑥).

𝐴(𝑥) = 1 ⟺ ∃𝑦 (|𝑦| < 𝑞(|𝑥|) & 𝑅(𝑥, 𝑦) = 1),
where 𝑅 ∈ 𝑃 .

• Let us check |𝑦| < 𝑞(|𝑥|) inside 𝑅.
• 𝑦 is a hint, given by someone to help us
solve the problem.

• Examples of 𝑦: the satisfying assignment;
the Hamiltonian cycle; ...
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Beyond Decision Problems

• An NP decision problem is the question
whether there exists a witness 𝑦 such that
𝑅(𝑥, 𝑦) = 1.

• E.g., a satisfying assignment for 𝜑.
• We could ask for all witnesses, and the
algorithm can yield them with polynomial
delay.

• Search problem: yield a witness or say “no.”
• Counting problem (the #P class): yield the
number of witnesses.
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Beyond Decision Problems
• A priori, the decision problem is the easiest
one.

• Indeed, if we can solve the search problem
or the counting problem, then we
automatically get a solution for the
decision problem (with the same 𝑅).

• However, search problems are also not
harder than decision ones.

• Namely, if P = NP, then any search problem
is also solvable in polynomial time.

• E.g., searching for SAT can be done via
dichotomy using decision for SAT.
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Search Problems

• However, it is not true that the search
problem is always reduced to the same
decision problem.

• For example, let 𝑅(𝜑, 𝑦) mean “𝑦 = (𝑎, 𝑏),
where 𝑎 is a satisfying assignment for 𝜑 or
𝑏 is a satisfying assignment for ¬𝜑.“

• Here the decision problem is trivial (always
“yes”), but the search problem is equivalent
to the one for SAT.
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Counting Problems
• #P is the class of counting problems
corresponding to NP decision problems.

• Counting problems can be harder than the
corresponding decision ones!

Theorem
#2-SAT is not solvable in polynomial time,
unless P = NP (while 2-SAT as a decision
problem belongs to P).

• In order to prove theorems like this one,
one has to develop the theory of
#P-completeness.
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Counting Reductions
• As the theory of NP-completeness is based
on polynomial m-reductions (denoted by
𝐴 ≤𝑃

𝑚 𝐵), the theory of #P-completeness is
based on counting reductions: #𝐴 ≤𝑃

𝑐 #𝐵.

• A counting reduction consists of two
functions, 𝑓 ∶ Σ∗ → Σ∗ on input data and
𝑔 ∶ ℕ → ℕ on counts (results).

• Recall that #𝐴 and #𝐵 are counting
problems, that is,

#𝐴(𝑥) = |{𝑦 ∣ 𝑅(𝑥, 𝑦) = 1}| ∈ ℕ,
and the same for #𝐵.
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Counting Reductions
• We say that #𝐴 ≤𝑃

𝑐 #𝐵, if there exists a
pair of polynomially computable reducing
functions 𝑓 and 𝑔 such that for any input 𝑥
we have

#𝐴(𝑥) = 𝑔(#𝐵(𝑓(𝑥))).
• This indeed allows to reduce #𝐴 to #𝐵.
Suppose we know how to solve #𝐵. Then,
in order to solve #𝐴, we take 𝑥, apply 𝑓 ,
then solve #𝐵 (yielding a natural number)
and apply 𝑔.



#P-Completeness

• A counting problem #𝐵 is #P-complete, if
for any other #𝐴 ∈ #P we have
#𝐴 ≤𝑃

𝑐 #𝐵...
• ... just as for NP-completeness.
• Now we can develop a theory of
#P-complete problems, which is parallel to
the theory of NP-completeness.



Parsimonious Reductions

• A counting reduction (𝑓, 𝑔), where 𝑔 is
identity, 𝑔(𝑛) = 𝑛, is called a parsimonious
reduction.

• A parsimonious reduction is also a specific
kind of m-reduction, since, in particular,
𝑔(0) = 0, thus, it conveys the answer to the
decision problem.



Parsimonious Reductions

• The reductions in Cook–Levin theorem are
parsimonious.

• Indeed, each trajectory of the
non-deterministic run (that is, each value of
hint 𝑦) is represented by exactly one satisfying
assignment.

• This yields the counting version of
Cook–Levin:

Theorem
#SAT is #P-complete.
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Cook – Levin Theorem

• The sequence of configurations (protocol)
of 𝐴 on input 𝑥 is encoded by a binary
matrix (𝑏𝑖𝑗) of size (𝑚 ⋅ 𝑝(|𝑥|)) × 𝑝(|𝑥|).

• Next, we construct a formula 𝜑𝑥 with
variables 𝑏00, 𝑏01, … which expresses the
fact that this matrix represents a correct
protocol of a successful execution.
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1. the first row represents the configuration
with 𝑥 on the tape, the machine observing
its first letter;

2. each next row is obtained from the
previous one by one of the rules of the
machine;

3. the last row includes state 𝑞𝐹 and the
answer “yes” (1).

This is all expressible as Boolean formulae.
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• Values for new variables 𝑡𝑖 are restored
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For any Boolean formula 𝜑, there exists an
equisatisfiable 3-CNF 𝜓 of polynomial size.

• Equisatisfiability means that 𝜓 is satisfiable
iff so is 𝜑.

• Constructing an equivalent 3-CNF of
polynomial size is not always possible:
even translation to CNF can lead to
exponential blowup.
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• Tseitin’s transformations look like
translation into 3-address (Assembler-like)
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(𝑎 + 𝑏) ∗ (𝑐 + 𝑑) is translated to
“add 𝑎 𝑏 𝑡1; add 𝑐 𝑑 𝑡2; mul 𝑡1 𝑡2 𝑟”

• For each subformula we introduce a new
variable and write the corresponding
equivalences.



Tseitin’s Transformations

• Tseitin’s transformations look like
translation into 3-address (Assembler-like)
code:
(𝑎 + 𝑏) ∗ (𝑐 + 𝑑) is translated to
“add 𝑎 𝑏 𝑡1; add 𝑐 𝑑 𝑡2; mul 𝑡1 𝑡2 𝑟”

• For each subformula we introduce a new
variable and write the corresponding
equivalences.



Tseitin’s Transformations

Example: (𝑝 → 𝑞) ∨ (𝑞 → (𝑝 → 𝑟))

(𝑡1 ↔ (𝑝 → 𝑞)) ∧
(𝑡2 ↔ (𝑝 → 𝑟)) ∧
(𝑡3 ↔ (𝑞 → 𝑡2)) ∧
(𝑡4 ↔ (𝑡1 ∨ 𝑡3)) ∧
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Beyond Parsimonious Reductions
• Using only parsimonious reductions for
establishing #P-completeness is
meaningless.

• Indeed, if a counting problem #𝐴 is proven
#P-complete by parsimonious reductions,
then its decision variant 𝐴 is NP-complete.

• In this case, if P ≠ NP, we know that even 𝐴
is not polynomially solvable, nothing to say
about #𝐴.

• Using more general counting reductions,
however, could give interesting results.
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𝐴 ∈ P, #𝐴 #P-complete
• Interesting cases include situations when
the decision problem is polynomially
decidable, while the counting problem is
hard.

• The famous example is 2-SAT.

• We know that 2-SAT ∈ P.
• We shall not give the proof of
#P-completeness for #2-SAT, since it is
technically hard.

• See A. Ben-Dor, S. Halevi (1993), “Zero-one
permanent is #P-complete, a simple proof”
and L.G. Valiant (1979), “The complexity of
enumeration and reliability problems”.
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𝐴 ∈ P, #𝐴 #P-complete

• We shall consider an easier example:
DNF-SAT vs. #DNF-SAT.

• Easily, DNF-SAT ∈ P (as a decision problem).
• However, in the counting case we can
reduce from CNF-SAT by duality:

𝑓(𝜑) = DNF(¬𝜑)
𝑔(𝑛) = 2𝑘 − 𝑛

(where 𝑘 is the number of variables).
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𝐴 ∈ P, #𝐴 #P-complete
• Indeed, the set of satisfying assingments
for 𝜑 is the complement of that for ¬𝜑.

• If 𝜑 is in CNF, then DNF(¬𝜑) is polynomially
computable.

• Thus, #CNF-SAT ≤𝑃
𝑐 #DNF-SAT, and

therefore #DNF-SAT is #P-complete.
• Corollary: if P ≠ NP, then #DNF-SAT is not
polynomially solvable.

• Otherwise so would be #CNF-SAT, and
therefore CNF-SAT, which implies P = NP.
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Permanent

• And now let us see how #P-completeness
arises in a completely different area.

• The determinant of a matrix is a
well-known notion in linear algebra:

det(𝑎𝑖,𝑗) = ∑
𝜎∈S𝑛

(−1)sign(𝜎)𝑎1,𝜎(1) ⋅ … ⋅ 𝑎𝑛,𝜎(𝑛)

• There exist fast algorithms for computing
the determinant, not by its definition (e.g.,
Gauss’ diagonalization).
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Permanent
• In the definition of determinant, products
are taken with different signs.

• The permanent is like the determinant, but
without signs:

perm(𝑎𝑖,𝑗) = ∑
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Permanent

• Permanent is also useful in linear algebra
and its application to data analysis.

• One example: computing the normalization
constant for Markov random fields is
equivalent to computing the permanent.

• However, computing the permanent by
definition requires more than exponential
time: namely, 𝑛 ⋅ 𝑛!.
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• ... and, unlike the determinant, for the
permanent there is probably no fast
algorithm.

• This follows from the theory of
#P-hardness.

• Let 𝑎𝑖,𝑗 be zeroes and ones. Then perm(𝑎𝑖,𝑗)
can be seen as a counting problem: how
many permutations from S𝑛 give all ones?
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Permanent

• The decision problem here (perm > 0) is
easy (polynomial), since it reduces to
finding a perfect matching in a bipartite
graph.

• The counting problem (computing perm) is
#P-hard (see Valiant 1979).

• This problem is parsimoniously reducible
to #2-SAT, so the latter is also #P-hard.
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