## Beyond NP-Completeness

Stepan Kuznetsov

Discrete Math Bridging Course, HSE University

## Euler and Hamiltonian Paths

- An Euler path in a (multi)graph is a path which traverses each edge exactly once.


## Euler and Hamiltonian Paths

- An Euler path in a (multi)graph is a path which traverses each edge exactly once.
- A Hamiltonian path should traverse each vertex exactly once.


## Euler and Hamiltonian Paths

- An Euler path in a (multi)graph is a path which traverses each edge exactly once.
- A Hamiltonian path should traverse each vertex exactly once.
- The two notions look similar, but there is a complexity gap: finding an Euler path is polynomial, while existence of a Hamiltonian one is NP-complete.


## Euler and Hamiltonian Paths

- Finding a Hamiltonian cycle, in general, is hard.


## Euler and Hamiltonian Paths

- Finding a Hamiltonian cycle, in general, is hard.
- Finding a Euler cycle is easy (can be done in polynomial time).


## Euler and Hamiltonian Paths

- Finding a Hamiltonian cycle, in general, is hard.
- Finding a Euler cycle is easy (can be done in polynomial time).
- What if, for a specific class of graphs, the problem of finding a Hamiltonian cycle could be reduced to the problem of finding a Euler cycle?


## Line Graphs

- For a graph $G$, we define its line graph $L(G)$, as follows:


## Line Graphs

- For a graph $G$, we define its line graph $L(G)$, as follows:
- vertices of $L(G)$ are edges of $G$;



## Line Graphs

- For a graph $G$, we define its line graph $L(G)$, as follows:
- vertices of $L(G)$ are edges of $G$;
- two vertices are connected in $L(G)$, if the corresponding edges of $G$ have a common end.



## Line Graphs

- For a graph $G$, we define its line graph $L(G)$, as follows:
- vertices of $L(G)$ are edges of $G$;
- two vertices are connected in $L(G)$, if the corresponding edges of $G$ have a common end.



## Line Graphs

- For a graph $G$, we define its line graph $L(G)$, as follows:
- vertices of $L(G)$ are edges of $G$;
- two vertices are connected in $L(G)$, if the corresponding edges of $G$ have a common end.



## Line Graphs and Paths

- A Euler path in $G$ induces a Hamiltonian path in $L(G)$.


## Line Graphs and Paths

- A Euler path in $G$ induces a Hamiltonian path in $L(G)$.
- The converse, however, does not hold: in $L(G)$, there could be a Hamiltonian cycle, which is not induced by a Euler cycle in $G$.


## Line Graphs and Paths

- A Euler path in $G$ induces a Hamiltonian path in $L(G)$.
- The converse, however, does not hold: in $L(G)$, there could be a Hamiltonian cycle, which is not induced by a Euler cycle in $G$.
Example:



## Line Graphs and Paths

- A Euler path in $G$ induces a Hamiltonian path in $L(G)$.
- The converse, however, does not hold: in $L(G)$, there could be a Hamiltonian cycle, which is not induced by a Euler cycle in $G$.
Example:



## Line Graphs and Paths

- And, of course, not every Hamiltonian graph is a line graph of some other graph $G$.


## Line Graphs and Paths

- And, of course, not every Hamiltonian graph is a line graph of some other graph G.
- Nevertheless, in some practically important cases representation of a given graph as $L(G)$ allows efficient construction of Hamiltonian cycles.


## Directed Line Graphs

- The line graph $L(G)$ can be also defined for the case of directed $G$.


## Directed Line Graphs

- The line graph $L(G)$ can be also defined for the case of directed $G$.
- Vertices of $L(G)$ are directed edges of $G$, and we connect $\langle u, v\rangle$ with $\langle v, w\rangle$, in the given direction:



## Directed Line Graphs

- The line graph $L(G)$ can be also defined for the case of directed $G$.
- Vertices of $L(G)$ are directed edges of $G$, and we connect $\langle u, v\rangle$ with $\langle v, w\rangle$, in the given direction:

- Again, a directed Euler path in $G$ induces a directed Hamiltonian path in $L(G)$.


## Application: Genome and Its Fragments

- The genome is, roughly a string of letters A, C, G, T (they encode nucleotides: adenine, cytosine, guanine, thymine).

ACTAGCTGCC

## Application: Genome and Its Fragments

- The genome is, roughly a string of letters A, C, G, T (they encode nucleotides: adenine, cytosine, guanine, thymine).
ACTAGCTGCC
- Consider the following model situation. Experiment does not give us the complete genome, but rather all its fragments of length 3, in a random order:
TGC, CTA, GCT, AGC, ACT, GCC, TAG, CTG


## Application: Genome and Its Fragments

- The genome is, roughly a string of letters A, C, G, T (they encode nucleotides: adenine, cytosine, guanine, thymine).
ACTAGCTGCC
- Consider the following model situation. Experiment does not give us the complete genome, but rather all its fragments of length 3 , in a random order:
TGC, CTA, GCT, AGC, ACT, GCC, TAG, CTG
- Our goal is to reassemble the genome.


## Reassembly as Hamiltonian Path

- It is easy to see that the reassembly corresponds to a Hamiltonian path in the overlap graph.


## Reassembly as Hamiltonian Path

- It is easy to see that the reassembly corresponds to a Hamiltonian path in the overlap graph.
- In this graph, triplet $u$ is connected to triplet $v$, if the last two letters of $u$ are the first two letters of $v$ :

$$
\text { CTA } \rightarrow \text { TAG. }
$$

## Reassembly as Hamiltonian Path



## Reassembly as Hamiltonian Path



## Reassembly as Hamiltonian Path

- We reduced the reassembly problem to the Hamiltonian path problem.


## Reassembly as Hamiltonian Path

- We reduced the reassembly problem to the Hamiltonian path problem.
- Unfortunately, the latter is hard.


## Reassembly as Hamiltonian Path

- We reduced the reassembly problem to the Hamiltonian path problem.
- Unfortunately, the latter is hard.
- It would be much better if we could use Euler path instead.


## De Bruijn Graph

- Fortunately, the overlap graph is $L(G)$ for some other graph $G$ :



## De Bruijn Graph

- Fortunately, the overlap graph is $L(G)$ for some other graph $G$ :

- After identifying vertices with the same annotation in $G$ and adding AC and CC (start and end), we get de Bruijn graph.


## De Bruijn Graph

A Euler path in de Bruijn graph induces a Hamiltonian path in overlap graph.

## Reassembly as Euler Path



## Reassembly as Euler Path



Two possible ways to reassemble: ACTAGCTGCC and ACTGCTAGCC.

## Overlap vs. de Bruijn

- This is an example how discovering the inner structure of a graph helps making problems algorithmically simpler.


## Overlap vs. de Bruijn

- This is an example how discovering the inner structure of a graph helps making problems algorithmically simpler.
- De Bruijn graph is used in real-world genome assemblers.


## The NP Class

- Let us recall the NP class.


## The NP Class

- Let us recall the NP class.
- Today we shall use Definition 2, with hints.


## The NP Class

- Let us recall the NP class.
- Today we shall use Definition 2, with hints.
- Denote the decision problem by $A(x)$.

$$
A(x)=1 \Longleftrightarrow \exists y(|y|<q(|x|) \& R(x, y)=1)
$$

where $R \in P$.

## The NP Class

- Let us recall the NP class.
- Today we shall use Definition 2, with hints.
- Denote the decision problem by $A(x)$.

$$
A(x)=1 \Longleftrightarrow \exists y(|y|<q(|x|) \& R(x, y)=1)
$$

where $R \in P$.

- Let us check $|y|<q(|x|)$ inside $R$.


## The NP Class

- Let us recall the NP class.
- Today we shall use Definition 2, with hints.
- Denote the decision problem by $A(x)$.

$$
A(x)=1 \Longleftrightarrow \exists y(|y|<q(|x|) \& R(x, y)=1)
$$

where $R \in P$.

- Let us check $|y|<q(|x|)$ inside $R$.
- $y$ is a hint, given by someone to help us solve the problem.


## The NP Class

- Let us recall the NP class.
- Today we shall use Definition 2, with hints.
- Denote the decision problem by $A(x)$.

$$
A(x)=1 \Longleftrightarrow \exists y(|y|<q(|x|) \& R(x, y)=1)
$$

where $R \in P$.

- Let us check $|y|<q(|x|)$ inside $R$.
- $y$ is a hint, given by someone to help us solve the problem.
- Examples of $y$ : the satisfying assignment; the Hamiltonian cycle; ...


## Beyond Decision Problems

- An NP decision problem is the question whether there exists a witness $y$ such that $R(x, y)=1$.


## Beyond Decision Problems

- An NP decision problem is the question whether there exists a witness $y$ such that $R(x, y)=1$.
- E.g., a satisfying assignment for $\varphi$.


## Beyond Decision Problems

- An NP decision problem is the question whether there exists a witness $y$ such that $R(x, y)=1$.
- E.g., a satisfying assignment for $\varphi$.
- We could ask for all witnesses, and the algorithm can yield them with polynomial delay.


## Beyond Decision Problems

- An NP decision problem is the question whether there exists a witness $y$ such that $R(x, y)=1$.
- E.g., a satisfying assignment for $\varphi$.
- We could ask for all witnesses, and the algorithm can yield them with polynomial delay.
- Search problem: yield a witness or say "no."


## Beyond Decision Problems

- An NP decision problem is the question whether there exists a witness $y$ such that $R(x, y)=1$.
- E.g., a satisfying assignment for $\varphi$.
- We could ask for all witnesses, and the algorithm can yield them with polynomial delay.
- Search problem: yield a witness or say "no."
- Counting problem (the \#P class): yield the number of witnesses.


## Beyond Decision Problems

- A priori, the decision problem is the easiest one.


## Beyond Decision Problems

- A priori, the decision problem is the easiest one.
- Indeed, if we can solve the search problem or the counting problem, then we automatically get a solution for the decision problem (with the same $R$ ).


## Beyond Decision Problems

- A priori, the decision problem is the easiest one.
- Indeed, if we can solve the search problem or the counting problem, then we automatically get a solution for the decision problem (with the same $R$ ).
- However, search problems are also not harder than decision ones.


## Beyond Decision Problems

- A priori, the decision problem is the easiest one.
- Indeed, if we can solve the search problem or the counting problem, then we automatically get a solution for the decision problem (with the same $R$ ).
- However, search problems are also not harder than decision ones.
- Namely, if $P=N P$, then any search problem is also solvable in polynomial time.


## Beyond Decision Problems

- A priori, the decision problem is the easiest one.
- Indeed, if we can solve the search problem or the counting problem, then we automatically get a solution for the decision problem (with the same $R$ ).
- However, search problems are also not harder than decision ones.
- Namely, if $P=N P$, then any search problem is also solvable in polynomial time.
- E.g., searching for SAT can be done via dichotomy using decision for SAT.


## Search Problems

- However, it is not true that the search problem is always reduced to the same decision problem.


## Search Problems

- However, it is not true that the search problem is always reduced to the same decision problem.
- For example, let $R(\varphi, y)$ mean " $y=(a, b)$, where $a$ is a satisfying assignment for $\varphi$ or $b$ is a satisfying assignment for $\neg \varphi$."


## Search Problems

- However, it is not true that the search problem is always reduced to the same decision problem.
- For example, let $R(\varphi, y)$ mean " $y=(a, b)$, where $a$ is a satisfying assignment for $\varphi$ or $b$ is a satisfying assignment for $\neg \varphi$."
- Here the decision problem is trivial (always "yes"), but the search problem is equivalent to the one for SAT.


## Counting Problems

- \#P is the class of counting problems corresponding to NP decision problems.


## Counting Problems

- \#P is the class of counting problems corresponding to NP decision problems.
- Counting problems can be harder than the corresponding decision ones!


## Counting Problems

- \#P is the class of counting problems corresponding to NP decision problems.
- Counting problems can be harder than the corresponding decision ones!


## Theorem

\#2-SAT is not solvable in polynomial time, unless $P=$ NP (while 2-SAT as a decision problem belongs to $P$ ).

## Counting Problems

- \#P is the class of counting problems corresponding to NP decision problems.
- Counting problems can be harder than the corresponding decision ones!


## Theorem

\#2-SAT is not solvable in polynomial time, unless $P=N P$ (while 2-SAT as a decision problem belongs to $P$ ).

- In order to prove theorems like this one, one has to develop the theory of \#P-completeness.


## Counting Reductions

- As the theory of NP-completeness is based on polynomial m-reductions (denoted by $\left.A \leq_{m}^{P} B\right)$, the theory of \#P-completeness is based on counting reductions: $\# A \leq_{c}^{P} \# B$.


## Counting Reductions

- As the theory of NP-completeness is based on polynomial m-reductions (denoted by $A \leq_{m}^{P} B$ ), the theory of \#P-completeness is based on counting reductions: $\# A \leq_{c}^{P} \# B$.
- A counting reduction consists of two functions, $f: \Sigma^{*} \rightarrow \Sigma^{*}$ on input data and $g: \mathbb{N} \rightarrow \mathbb{N}$ on counts (results).


## Counting Reductions

- As the theory of NP-completeness is based on polynomial m-reductions (denoted by $A \leq_{m}^{P} B$ ), the theory of \#P-completeness is based on counting reductions: $\# A \leq_{c}^{P} \# B$.
- A counting reduction consists of two functions, $f: \Sigma^{*} \rightarrow \Sigma^{*}$ on input data and $g: \mathbb{N} \rightarrow \mathbb{N}$ on counts (results).
- Recall that \# $A$ and $\# B$ are counting problems, that is,

$$
\# A(x)=|\{y \mid R(x, y)=1\}| \in \mathbb{N}
$$

and the same for $\# B$.

## Counting Reductions

- We say that $\# A \leq_{c}^{P} \# B$, if there exists a pair of polynomially computable reducing functions $f$ and $g$ such that for any input $x$ we have

$$
\# A(x)=g(\# B(f(x))) .
$$

- This indeed allows to reduce $\# A$ to $\# B$. Suppose we know how to solve $\# B$. Then, in order to solve \#A, we take $x$, apply $f$, then solve $\# B$ (yielding a natural number) and apply $g$.


## \#P-Completeness

- A counting problem \#B is \#P-complete, if for any other $\# A \in \# \mathrm{P}$ we have $\# A \leq_{c}^{P} \# B$...
- ... just as for NP-completeness.
- Now we can develop a theory of \#P-complete problems, which is parallel to the theory of NP-completeness.


## Parsimonious Reductions

- A counting reduction $(f, g)$, where $g$ is identity, $g(n)=n$, is called a parsimonious reduction.
- A parsimonious reduction is also a specific kind of $m$-reduction, since, in particular, $g(0)=0$, thus, it conveys the answer to the decision problem.


## Parsimonious Reductions

- The reductions in Cook-Levin theorem are parsimonious.


## Parsimonious Reductions

- The reductions in Cook-Levin theorem are parsimonious.
- Indeed, each trajectory of the non-deterministic run (that is, each value of hint $y$ ) is represented by exactly one satisfying assignment.


## Parsimonious Reductions

- The reductions in Cook-Levin theorem are parsimonious.
- Indeed, each trajectory of the non-deterministic run (that is, each value of hint $y$ ) is represented by exactly one satisfying assignment.
- This yields the counting version of Cook-Levin:


## Parsimonious Reductions

- The reductions in Cook-Levin theorem are parsimonious.
- Indeed, each trajectory of the non-deterministic run (that is, each value of hint $y$ ) is represented by exactly one satisfying assignment.
- This yields the counting version of Cook-Levin:


## Theorem

\#SAT is \#P-complete.

## Cook - Levin Theorem

- The sequence of configurations (protocol) of $A$ on input $x$ is encoded by a binary matrix $\left(b_{i j}\right)$ of size $(m \cdot p(|x|)) \times p(|x|)$.


## Cook - Levin Theorem

- The sequence of configurations (protocol) of $A$ on input $x$ is encoded by a binary matrix $\left(b_{i j}\right)$ of size $(m \cdot p(|x|)) \times p(|x|)$.
- Next, we construct a formula $\varphi_{x}$ with variables $b_{00}, b_{01}, \ldots$ which expresses the fact that this matrix represents a correct protocol of a successful execution.


## Cook - Levin Theorem

$\varphi_{x}$ is a conjunction of the following claims:

1. the first row represents the configuration with $x$ on the tape, the machine observing its first letter;
2. each next row is obtained from the previous one by one of the rules of the machine;
3. the last row includes state $q_{F}$ and the answer "yes" (1).

## Cook - Levin Theorem

$\varphi_{x}$ is a conjunction of the following claims:

1. the first row represents the configuration with $x$ on the tape, the machine observing its first letter;
2. each next row is obtained from the previous one by one of the rules of the machine;
3. the last row includes state $q_{F}$ and the answer "yes" (1).

This is all expressible as Boolean formulae.

## Parsimonious Reductions

- Tseitin's transformations are also parsimonious.


## Parsimonious Reductions

- Tseitin's transformations are also parsimonious.
- That is, any Boolean formula $\varphi$ can be translated into a 3-CNF $\psi$, such satisfying assignments of $\psi$ are in one-to-one correspondence with those for $\varphi$.


## Parsimonious Reductions

- Tseitin's transformations are also parsimonious.
- That is, any Boolean formula $\varphi$ can be translated into a 3-CNF $\psi$, such satisfying assignments of $\psi$ are in one-to-one correspondence with those for $\varphi$.
- Values for new variables $t_{i}$ are restored uniquely.


## Parsimonious Reductions

- Tseitin's transformations are also parsimonious.
- That is, any Boolean formula $\varphi$ can be translated into a 3-CNF $\psi$, such satisfying assignments of $\psi$ are in one-to-one correspondence with those for $\varphi$.
- Values for new variables $t_{i}$ are restored uniquely.
- Thus, \#3-SAT is also \#P-complete.


## Tseitin's Transformations

## Theorem

For any Boolean formula $\varphi$, there exists an equisatisfiable 3-CNF $\psi$ of polynomial size.

- Equisatisfiability means that $\psi$ is satisfiable iff $s o$ is $\varphi$.


## Tseitin's Transformations

## Theorem

For any Boolean formula $\varphi$, there exists an equisatisfiable 3-CNF $\psi$ of polynomial size.

- Equisatisfiability means that $\psi$ is satisfiable iff $s o$ is $\varphi$.
- Constructing an equivalent 3-CNF of polynomial size is not always possible: even translation to CNF can lead to exponential blowup.


## Tseitin's Transformations

- Tseitin's transformations look like translation into 3-address (Assembler-like) code:
$(a+b) *(c+d)$ is translated to
"add $a b t_{1}$; add $c d t_{2}$; mul $t_{1} t_{2} r$ "


## Tseitin's Transformations

- Tseitin's transformations look like translation into 3-address (Assembler-like) code:
$(a+b) *(c+d)$ is translated to "add $a b t_{1}$; add $c d t_{2}$; mul $t_{1} t_{2} r$ "
- For each subformula we introduce a new variable and write the corresponding equivalences.


## Tseitin's Transformations

Example: $(p \rightarrow q) \vee(q \rightarrow(p \rightarrow r))$

## Tseitin's Transformations

Example: $(p \rightarrow q) \vee(q \rightarrow(p \rightarrow r))$

$$
\begin{aligned}
& \left(t_{1} \leftrightarrow(p \rightarrow q)\right) \wedge \\
& \left(t_{2} \leftrightarrow(p \rightarrow r)\right) \wedge \\
& \left(t_{3} \leftrightarrow\left(q \rightarrow t_{2}\right)\right) \wedge \\
& \left(t_{4} \leftrightarrow\left(t_{1} \vee t_{3}\right)\right) \wedge \\
& t_{4}
\end{aligned}
$$

## Tseitin's Transformations

## Transform into 3-CNF by the following table:

$$
\begin{array}{l|l}
t_{k} \leftrightarrow\left(t_{i} \wedge t_{j}\right) & \left(\neg t_{i} \vee \neg t_{j} \vee t_{k}\right) \wedge\left(t_{i} \vee \neg t_{k}\right) \wedge\left(t_{j} \vee \neg t_{k}\right) \\
t_{k} \leftrightarrow\left(t_{i} \vee t_{j}\right) & \left(t_{i} \vee t_{j} \vee \neg t_{k}\right) \wedge\left(\neg t_{i} \vee t_{k}\right) \wedge\left(\neg t_{j} \vee t_{k}\right) \\
t_{k} \leftrightarrow\left(t_{i} \rightarrow t_{j}\right) & \left(\neg t_{i} \vee t_{j} \vee \neg t_{k}\right) \wedge\left(t_{i} \vee t_{k}\right) \wedge\left(\neg t_{j} \vee t_{k}\right) \\
t_{k} \leftrightarrow \neg t_{i} & \left(t_{i} \vee t_{k}\right) \wedge\left(\neg t_{i} \vee \neg t_{k}\right)
\end{array}
$$

## Tseitin's Transformations

Transform into 3-CNF by the following table:

$$
\begin{array}{l|l}
t_{k} \leftrightarrow\left(t_{i} \wedge t_{j}\right) & \left(\neg t_{i} \vee \neg t_{j} \vee t_{k}\right) \wedge\left(t_{i} \vee \neg t_{k}\right) \wedge\left(t_{j} \vee \neg t_{k}\right) \\
t_{k} \leftrightarrow\left(t_{i} \vee t_{j}\right) & \left(t_{i} \vee t_{j} \vee \neg t_{k}\right) \wedge\left(\neg t_{i} \vee t_{k}\right) \wedge\left(\neg t_{j} \vee t_{k}\right) \\
t_{k} \leftrightarrow\left(t_{i} \rightarrow t_{j}\right) & \left(\neg t_{i} \vee t_{j} \vee \neg t_{k}\right) \wedge\left(t_{i} \vee t_{k}\right) \wedge\left(\neg t_{j} \vee t_{k}\right) \\
t_{k} \leftrightarrow \neg t_{i} & \begin{array}{l}
\left(t_{i} \vee t_{k}\right) \wedge\left(\neg t_{i} \vee \neg t_{k}\right)
\end{array}
\end{array}
$$

For our example, we get:

$$
\begin{aligned}
& \left(\neg p \vee q \vee \neg t_{1}\right) \wedge\left(p \vee t_{1}\right) \wedge\left(\neg q \vee t_{1}\right) \wedge \\
& \left(\neg p \vee r \vee \neg t_{2}\right) \wedge\left(p \vee t_{2}\right) \wedge\left(\neg r \vee t_{2}\right) \wedge \\
& \left(\neg q \vee t_{2} \vee \neg t_{3}\right) \wedge\left(q \vee t_{3}\right) \wedge\left(\neg t_{2} \vee t_{3}\right) \wedge \\
& \left(t_{1} \vee t_{3} \vee \neg t_{4}\right) \wedge\left(\neg t_{1} \vee t_{4}\right) \wedge\left(\neg t_{3} \vee t_{4}\right) \wedge t_{4}
\end{aligned}
$$

## Beyond Parsimonious Reductions

- Using only parsimonious reductions for establishing \#P-completeness is meaningless.


## Beyond Parsimonious Reductions

- Using only parsimonious reductions for establishing \#P-completeness is meaningless.
- Indeed, if a counting problem $\# A$ is proven \#P-complete by parsimonious reductions, then its decision variant $A$ is NP-complete.


## Beyond Parsimonious Reductions

- Using only parsimonious reductions for establishing \#P-completeness is meaningless.
- Indeed, if a counting problem \#A is proven \#P-complete by parsimonious reductions, then its decision variant $A$ is NP-complete.
- In this case, if $\mathrm{P} \neq \mathrm{NP}$, we know that even $A$ is not polynomially solvable, nothing to say about \# $A$.


## Beyond Parsimonious Reductions

- Using only parsimonious reductions for establishing \#P-completeness is meaningless.
- Indeed, if a counting problem $\# A$ is proven \#P-complete by parsimonious reductions, then its decision variant $A$ is NP-complete.
- In this case, if $\mathrm{P} \neq \mathrm{NP}$, we know that even $A$ is not polynomially solvable, nothing to say about \#A.
- Using more general counting reductions, however, could give interesting results.


## $A \in \mathrm{P}, \# A$ \#P-complete

- Interesting cases include situations when the decision problem is polynomially decidable, while the counting problem is hard.


## $A \in \mathrm{P}, \# A$ \#P-complete

- Interesting cases include situations when the decision problem is polynomially decidable, while the counting problem is hard.
- The famous example is 2-SAT.


## $A \in \mathrm{P}, \# A$ \#P-complete

- Interesting cases include situations when the decision problem is polynomially decidable, while the counting problem is hard.
- The famous example is 2-SAT.
- We know that 2-SAT $\in P$.


## $A \in \mathrm{P}, \# A$ \# P -complete

- Interesting cases include situations when the decision problem is polynomially decidable, while the counting problem is hard.
- The famous example is 2 -SAT.
- We know that 2-SAT $\in P$.
- We shall not give the proof of \#P-completeness for \#2-SAT, since it is technically hard.


## $A \in \mathrm{P}, \# A$ \# P -complete

- Interesting cases include situations when the decision problem is polynomially decidable, while the counting problem is hard.
- The famous example is 2-SAT.
- We know that 2-SAT $\in P$.
- We shall not give the proof of \#P-completeness for \#2-SAT, since it is technically hard.
- See A. Ben-Dor, S. Halevi (1993), "Zero-one permanent is \#P-complete, a simple proof" and L.G. Valiant (1979), "The complexity of enumeration and reliability problems".


## $A \in \mathrm{P}, \# A$ \#P-complete

- We shall consider an easier example: DNF-SAT vs. \#DNF-SAT.


## $A \in \mathrm{P}, \# A$ \#P-complete

- We shall consider an easier example: DNF-SAT vs. \#DNF-SAT.
- Easily, DNF-SAT $\in P$ (as a decision problem).


## $A \in \mathrm{P}, \# A$ \#P-complete

- We shall consider an easier example: DNF-SAT vs. \#DNF-SAT.
- Easily, DNF-SAT $\in P$ (as a decision problem).
- However, in the counting case we can reduce from CNF-SAT by duality:

$$
\begin{aligned}
& f(\varphi)=\operatorname{DNF}(\neg \varphi) \\
& g(n)=2^{k}-n
\end{aligned}
$$

(where $k$ is the number of variables).

## $A \in \mathrm{P}, \# A$ \#P-complete

- Indeed, the set of satisfying assingments for $\varphi$ is the complement of that for $\neg \varphi$.


## $A \in \mathrm{P}, \# A$ \#P-complete

- Indeed, the set of satisfying assingments for $\varphi$ is the complement of that for $\neg \varphi$.
- If $\varphi$ is in CNF, then $\operatorname{DNF}(\neg \varphi)$ is polynomially computable.


## $A \in \mathrm{P}, \# A$ \#P-complete

- Indeed, the set of satisfying assingments for $\varphi$ is the complement of that for $\neg \varphi$.
- If $\varphi$ is in CNF, then $\operatorname{DNF}(\neg \varphi)$ is polynomially computable.
- Thus, \#CNF-SAT $\leq_{c}^{P}$ \#DNF-SAT, and therefore \#DNF-SAT is \#P-complete.


## $A \in \mathrm{P}, \# A$ \#P-complete

- Indeed, the set of satisfying assingments for $\varphi$ is the complement of that for $\neg \varphi$.
- If $\varphi$ is in CNF, then $\operatorname{DNF}(\neg \varphi)$ is polynomially computable.
- Thus, \#CNF-SAT $\leq_{c}^{P}$ \#DNF-SAT, and therefore \#DNF-SAT is \#P-complete.
- Corollary: if $\mathrm{P} \neq \mathrm{NP}$, then \#DNF-SAT is not polynomially solvable.


## $A \in \mathrm{P}, \# A$ \#P-complete

- Indeed, the set of satisfying assingments for $\varphi$ is the complement of that for $\neg \varphi$.
- If $\varphi$ is in CNF, then $\operatorname{DNF}(\neg \varphi)$ is polynomially computable.
- Thus, \#CNF-SAT $\leq_{c}^{P}$ \#DNF-SAT, and therefore \#DNF-SAT is \#P-complete.
- Corollary: if $P \neq N P$, then \#DNF-SAT is not polynomially solvable.
- Otherwise so would be \#CNF-SAT, and therefore CNF-SAT, which implies $P=N P$.


## Permanent

- And now let us see how \#P-completeness arises in a completely different area.


## Permanent

- And now let us see how \#P-completeness arises in a completely different area.
- The determinant of a matrix is a well-known notion in linear algebra:

$$
\operatorname{det}\left(a_{i, j}\right)=\sum_{\sigma \in \mathbf{S}_{n}}(-1)^{\operatorname{sign}(\sigma)} a_{1, \sigma(1)} \cdot \ldots \cdot a_{n, \sigma(n)}
$$

## Permanent

- And now let us see how \#P-completeness arises in a completely different area.
- The determinant of a matrix is a well-known notion in linear algebra:

$$
\operatorname{det}\left(a_{i, j}\right)=\sum_{\sigma \in \mathbf{S}_{n}}(-1)^{\operatorname{sign}(\sigma)} a_{1, \sigma(1)} \cdot \ldots \cdot a_{n, \sigma(n)}
$$

- There exist fast algorithms for computing the determinant, not by its definition (e.g., Gauss' diagonalization).


## Permanent

- In the definition of determinant, products are taken with different signs.


## Permanent

- In the definition of determinant, products are taken with different signs.



## Permanent

- In the definition of determinant, products are taken with different signs.



## Permanent

- In the definition of determinant, products are taken with different signs.

- The permanent is like the determinant, but without signs:

$$
\operatorname{perm}\left(a_{i, j}\right)=\sum_{\sigma \in \mathbf{S}_{n}} a_{1, \sigma(1)} \cdot \ldots \cdot a_{n, \sigma(n)}
$$

## Permanent

- Permanent is also useful in linear algebra and its application to data analysis.


## Permanent

- Permanent is also useful in linear algebra and its application to data analysis.
- One example: computing the normalization constant for Markov random fields is equivalent to computing the permanent.


## Permanent

- Permanent is also useful in linear algebra and its application to data analysis.
- One example: computing the normalization constant for Markov random fields is equivalent to computing the permanent.
- However, computing the permanent by definition requires more than exponential time: namely, $n \cdot n$ !.


## Permanent

- ... and, unlike the determinant, for the permanent there is probably no fast algorithm.


## Permanent

- ... and, unlike the determinant, for the permanent there is probably no fast algorithm.
- This follows from the theory of \#P-hardness.


## Permanent

- ... and, unlike the determinant, for the permanent there is probably no fast algorithm.
- This follows from the theory of \#P-hardness.
- Let $a_{i, j}$ be zeroes and ones. Then $\operatorname{perm}\left(a_{i, j}\right)$
can be seen as a counting problem: how many permutations from $\mathbf{S}_{n}$ give all ones?


## Permanent

- The decision problem here (perm $>0$ ) is easy (polynomial), since it reduces to finding a perfect matching in a bipartite graph.


## Permanent

- The decision problem here ( perm $>0$ ) is easy (polynomial), since it reduces to finding a perfect matching in a bipartite graph.
- The counting problem (computing perm) is \#P-hard (see Valiant 1979).


## Permanent

- The decision problem here ( perm $>0$ ) is easy (polynomial), since it reduces to finding a perfect matching in a bipartite graph.
- The counting problem (computing perm) is \#P-hard (see Valiant 1979).
- This problem is parsimoniously reducible to \#2-SAT, so the latter is also \#P-hard.

