NP-Completeness of HAMPATH

Stepan Kuznetsov

Discrete Math Bridging Course, HSE University

• We consider the Hamiltonian path problem for directed graph: given a directed graph and two vertices, *s* and *t*, does there exist a path from *s* to *t* which traverses each vertex exactly once.

- We consider the **Hamiltonian path** problem for directed graph: given a directed graph and two vertices, *s* and *t*, does there exist a path from *s* to *t* which traverses each vertex exactly once.
- We denote this problem by HAMPATH.

- We consider the **Hamiltonian path** problem for directed graph: given a directed graph and two vertices, *s* and *t*, does there exist a path from *s* to *t* which traverses each vertex exactly once.
- We denote this problem by HAMPATH.

Theorem

HAMPATH is NP-complete.

• The fact that HAMPATH belongs to NP is established by definition: the path itself is a hint, polynomial in size and polynomially checkable.

- The fact that HAMPATH belongs to NP is established by definition: the path itself is a hint, polynomial in size and polynomially checkable.
- NP-hardness is proved by backwards reduction:

$$3-SAT \leq_m^P HAMPATH.$$

Backwards Reduction

Backwards reduction means that we need to construct a polynomial algorithm which takes a 3-CNF φ and constructs a directed graph G_{φ} with the following property:

 G_{arphi} has a Hamiltonian path from s to t if and only if arphi is satisfiable.

Gadget

Let φ include m clauses. For each variable x_i of φ we construct the following subgraph called gadget:

Gadget

In a Hamiltonian path, this gadget can be traversed, from s_i to t_i , only in the following two ways:

Gadget

In a Hamiltonian path, this gadget can be traversed, from s_i to t_i , only in the following two ways:

Green means true, red means false.

Modelling Clauses

Next, for each clause C_j we add a designated vertex c_j . If C_j includes x_i :

Modelling Clauses

If C_j includes $\neg x_i$:

• If C_j includes x_i , then it can be visited, while traversing the *i*-th gadget, only on the green path ($x_i = 1$).

- If C_j includes x_i , then it can be visited, while traversing the *i*-th gadget, only on the green path ($x_i = 1$).
- Dually, if C_j includes $\neg x_i$, then we can use only the red path ($x_i = 0$).

- If C_j includes x_i , then it can be visited, while traversing the *i*-th gadget, only on the green path ($x_i = 1$).
- Dually, if C_j includes $\neg x_i$, then we can use only the red path ($x_i = 0$).
- Since C_j should be visited (exactly once), we have to satisfy at least one of its literals.

- If C_j includes x_i , then it can be visited, while traversing the *i*-th gadget, only on the green path ($x_i = 1$).
- Dually, if C_j includes $\neg x_i$, then we can use only the red path ($x_i = 0$).
- Since C_j should be visited (exactly once), we have to satisfy at least one of its literals.
- Finally, we connect the gadgets: $s_1 = s_1$,

$$s_2 = t_1$$
, ..., $s_n = t_{n-1}$, $t_n = t$.

- If C_j includes x_i , then it can be visited, while traversing the *i*-th gadget, only on the green path ($x_i = 1$).
- Dually, if C_j includes $\neg x_i$, then we can use only the red path ($x_i = 0$).
- Since C_j should be visited (exactly once), we have to satisfy at least one of its literals.
- Finally, we connect the gadgets: $s_1 = s_1$,

$$s_2 = t_1 \text{, ..., } s_n = t_{n-1} \text{, } t_n = t.$$

- There is a Hamiltonian path from s to t in G_{φ} iff φ is satisfiable.