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Theorem
HAMPATH is NP-complete.
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established by definition: the path itself is
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- NP-hardness is proved by backwards
reduction:

3-SAT <P HAMPATH.



Backwards Reduction

Backwards reduction means that we need to
construct a polynomial algorithm which takes a
3-CNF ¢ and constructs a directed graph G,
with the following property:

G, has a Hamiltonian path from s to ¢
if and only if
© 1S satisfiable.



Gadget

Let ¢ include m clauses. For each variable z,; of
@ we construct the following subgraph called
gadget:




Gadget

In @ Hamiltonian path, this gadget can be traversed, from
s; to t;, only in the following two ways:




Gadget

In @ Hamiltonian path, this gadget can be traversed, from
s; to t;, only in the following two ways:

Green means true, red means false.



Modelling Clauses

Next, for each clause C; we add a designated
vertex c;. If C; includes x;:
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If C; includes —z;:
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Modelling Satisfiability

- |If C; includes x;, then it can be visited,
while traversing the i-th gadget, only on
the green path (z;, = 1).

- Dually, if C; includes —x;, then we can use
only the red path (x, = 0).

+ Since C; should be visited (exactly once),
we have to satisfy at least one of its literals.

- Finally, we connect the gadgets: s; = s,

S =ty, ., 8, =1,_1,t, =1

- There is a Hamiltonian path from s to ¢ in

G, iff p is satisfiable.



