P and NP

1. Show that any problem in the NP class is decidable in exponential (i.e., $2^{\text {poly(} n)}$) time.
2. Prove that if an NP-hard problem belongs to P, then $P=N P$.
3. Suppose $P \neq N P$. Could there exist a polynomial-time algorithm for translating a Boolean formula into an equivalent DNF?
4. Show that if NP \neq coNP, then $P \neq N P$.
5. (a) Suppose SAT $\in P$. Show that there exists a polynomial time algorithm which checks satisfiability of Boolean formulae and, if a given formula is satisfiable, yields a satisfying assignment.
(b) Does the same work for 2-SAT (checking satisfiability for 2-CNF)?
6. (a) Does there exist a polynomial time algorithm that, given a 2 -CNF, yields all its satisfying assignments?
(b) Does there exists an algorithm for generating all satisfying assignments of a given 2-CNF with polynomial delay? That means that the algorithm should produce the answers (satisfying assignments) gradually, one by one, spending a polynomially bounded amount of time before the first answer and between answers.
7. Suppose $P \neq N P$. Could there exist a polynomial-time algorithm which, given a Boolean formula φ, answers whether the number of its satisfying assignments is greater or equal than 2 ?
