Graphs (exercises)

1. The degree of a vertex is the number of edges connected to it. Can there be a graph with the following degrees of vertices?
(a) 9 vertices of degree 3,11 vertices of degree 4 , and 10 vertices of degree 5 (and no other vertices) ?
(b) 2 vertices of degree 3 and 3 vertices of degree 2 ?
(c) one vertex of degree 1 , two vertices of degree 2 , one vertex of degree 3 , two vertices of degree 5 ? If yes, how many edges should this graph have?
2. A Euler path in a (multi)graph is a path which visits each edge exactly once.
(a) Can a multigraph with the following degrees of vertices have a Euler path: 3 vertices of degree 3 and one vertex of degree 5 ?
(b) Will a multigraph with the following degrees of vertices always have a Euler path: 2 vertices of degree 1,10 vertices of degree 4 , and 7 vertices of degree 6 ?
3. Does the following decision problem belong to P: given a multigraph G, decide whether it has an Euler path?
4. A Hamiltonian cycle in a graph is a cycle which visits each vertex exactly once. Does the following graph have a Hamiltonian cycle?

5. Reducibility. Recall that, for two decision problems, $A \leq_{m}^{P} B$ if there exists a polynomial time computable function f such that $x \in A \Longleftrightarrow f(x) \in B$, for any x.
Consider the following decision problems:

- INDSET: given a graph G and a number k, decide whether G contains an independent set of k vertices (that is, k vertices, none of which are connected);
- CLIQUE: given a graph G and a number k, decide whether G contains a clique of k vertices (that is, k vertices, which are connected pairwise);
- VERTEXCOVER: given a graph G and a number k, decide whether G has a vertex cover of k vertices (that is, a set U of k vertices such that for every edge at least one end of belongs to U).

Show that: (a) INDSET \leq_{m}^{P} CLIQUE and CLIQUE \leq_{m}^{P} INDSET; (b) INDSET \leq_{m}^{P} VERTEXCOVER.
6. Show that the 2 -colorability problem for a graph (given a graph, determine whether it can be colored in two colors so that vertices connected by an edge have different colors) belongs to P , by reducing it to 2-SAT and using resolution method.

