Miscellanea

- 1. We know that $2\text{-COLOR} \in \mathsf{P}$ and 3-COLOR is NP-complete. What about 4-COLOR?
- 2. Is #2-COLOR a #P-complete problem?
- 3. By $T_{\mathfrak{M}}(n)$ let us denote $\max_{|x|=n} t_{\mathfrak{M}}(x)$, where $t_{\mathfrak{M}}(x)$ is the the number of steps \mathfrak{M} performs when running on x (if it never stops, $t_{\mathfrak{M}}(x) = \infty$). Consider a Turing machine \mathfrak{M}_2 with two tapes. At each step, it operates on each tape. Show that there exists a one-tape Turing machine \mathfrak{M} that computes the same function as \mathfrak{M}_2 . Give an upper bound for $T_{\mathfrak{M}}(n)$ in terms of $T_{\mathfrak{M}_2}(n)$. Do the same for the more general case of a k-tape machine \mathfrak{M}_k .
- 4. A graph has 17 vertices, and the degree of each vertex is greater or equal than 8. Prove that such a graph is always connected.
- 5. A graph has 20 vertices, and the degree of each vertex is greater or equal than 10. Prove that such a graph always has a Hamiltonian path.
- 6. Vertices of graph G are colored in two colors (black and white). Each black vertex is connected to 3 white ones and each white vertex is connected to 4 black ones. Prove that the total number of vertices of G divides by 7.
- 7. Express the following property of a graph (a) by a first-order formula; (b) by a Boolean formula: graph G has no triangles, i.e., cliques of 3 vertices. (c) Does checking this property belong to P?
- 8. Is the following first-order formula generally true?

 $\left(\left(\forall x \ R(x, x) \right) \land \left(\forall x \forall y \ \left(R(x, y) \rightarrow R(y, x) \right) \right) \right) \rightarrow \left(\forall x \forall y \forall z \ \left(R(x, y) \land R(y, z) \right) \rightarrow R(x, z) \right)$

9. Let us denote by EXP (resp., NEXP) the class of decision problems that can be solved on a deterministic (resp., non-deterministic) Turing machine with running time bounded by $2^{\text{poly}(n)}$, where n = |x| is the input size. Prove that if EXP \neq NEXP then P \neq NP.