
NP-Completeness of 3-COLOR

Stepan Kuznetsov

Discrete Math Bridging Course, HSE University

𝑘-COLOR
• A correct coloring of an undirected graph

𝐺 = (𝑉 , 𝐸) in 𝑘 colors is a function
𝑐 ∶ 𝑉 → 𝐶, where |𝐶| = 𝑘
(e.g., 𝐶 = {1, … , 𝑘})
and for any (𝑢, 𝑣) ∈ 𝐸 we have 𝑐(𝑢) ≠ 𝑐(𝑣).

• The algorithmic problem 𝑘-COLOR:
determine whether a given graph 𝐺 is
colorable in 𝑘 colors.

• We have

𝑘-COLOR ≤𝑃
𝑚 (𝑘 + 1)-COLOR,

thus, complexity of 𝑘-COLOR grows with 𝑘.

𝑘-COLOR
• A correct coloring of an undirected graph

𝐺 = (𝑉 , 𝐸) in 𝑘 colors is a function
𝑐 ∶ 𝑉 → 𝐶, where |𝐶| = 𝑘
(e.g., 𝐶 = {1, … , 𝑘})
and for any (𝑢, 𝑣) ∈ 𝐸 we have 𝑐(𝑢) ≠ 𝑐(𝑣).

• The algorithmic problem 𝑘-COLOR:
determine whether a given graph 𝐺 is
colorable in 𝑘 colors.

• We have

𝑘-COLOR ≤𝑃
𝑚 (𝑘 + 1)-COLOR,

thus, complexity of 𝑘-COLOR grows with 𝑘.

𝑘-COLOR
• A correct coloring of an undirected graph

𝐺 = (𝑉 , 𝐸) in 𝑘 colors is a function
𝑐 ∶ 𝑉 → 𝐶, where |𝐶| = 𝑘
(e.g., 𝐶 = {1, … , 𝑘})
and for any (𝑢, 𝑣) ∈ 𝐸 we have 𝑐(𝑢) ≠ 𝑐(𝑣).

• The algorithmic problem 𝑘-COLOR:
determine whether a given graph 𝐺 is
colorable in 𝑘 colors.

• We have

𝑘-COLOR ≤𝑃
𝑚 (𝑘 + 1)-COLOR,

thus, complexity of 𝑘-COLOR grows with 𝑘.

𝑘-COLOR
• 𝑘-COLOR ∈ NP for any 𝑘.

• 1-COLOR is trivial.
• Since

2-COLOR ≤𝑃
𝑚 2-SAT,

we have 2-COLOR ∈ P.
• For 𝑘 = 3, we also have

3-COLOR ≤𝑃
𝑚 3-SAT,

but this is just a particular case of Cook–Levin.
• In order to prove NP-hardness of 3-COLOR,
we need the opposite reduction.

𝑘-COLOR
• 𝑘-COLOR ∈ NP for any 𝑘.
• 1-COLOR is trivial.

• Since
2-COLOR ≤𝑃

𝑚 2-SAT,
we have 2-COLOR ∈ P.

• For 𝑘 = 3, we also have

3-COLOR ≤𝑃
𝑚 3-SAT,

but this is just a particular case of Cook–Levin.
• In order to prove NP-hardness of 3-COLOR,
we need the opposite reduction.

𝑘-COLOR
• 𝑘-COLOR ∈ NP for any 𝑘.
• 1-COLOR is trivial.
• Since

2-COLOR ≤𝑃
𝑚 2-SAT,

we have 2-COLOR ∈ P.

• For 𝑘 = 3, we also have

3-COLOR ≤𝑃
𝑚 3-SAT,

but this is just a particular case of Cook–Levin.
• In order to prove NP-hardness of 3-COLOR,
we need the opposite reduction.

𝑘-COLOR
• 𝑘-COLOR ∈ NP for any 𝑘.
• 1-COLOR is trivial.
• Since

2-COLOR ≤𝑃
𝑚 2-SAT,

we have 2-COLOR ∈ P.
• For 𝑘 = 3, we also have

3-COLOR ≤𝑃
𝑚 3-SAT,

but this is just a particular case of Cook–Levin.

• In order to prove NP-hardness of 3-COLOR,
we need the opposite reduction.

𝑘-COLOR
• 𝑘-COLOR ∈ NP for any 𝑘.
• 1-COLOR is trivial.
• Since

2-COLOR ≤𝑃
𝑚 2-SAT,

we have 2-COLOR ∈ P.
• For 𝑘 = 3, we also have

3-COLOR ≤𝑃
𝑚 3-SAT,

but this is just a particular case of Cook–Levin.
• In order to prove NP-hardness of 3-COLOR,
we need the opposite reduction.

3-COLOR
Theorem
3-SAT ≤𝑃

𝑚 3-COLOR, and therefore 3-COLOR is
NP-complete.

• We need to construct a polynomially
computable reducing function

𝑓∶ 𝜑 ↦ 𝐺𝜑,

such that for any 3-CNF Boolean formula 𝜑
it is satisfiable if and only if the graph 𝐺𝜑
is colorable in 3 colors.

3-COLOR
Theorem
3-SAT ≤𝑃

𝑚 3-COLOR, and therefore 3-COLOR is
NP-complete.

• We need to construct a polynomially
computable reducing function

𝑓∶ 𝜑 ↦ 𝐺𝜑,

such that for any 3-CNF Boolean formula 𝜑
it is satisfiable if and only if the graph 𝐺𝜑
is colorable in 3 colors.

3-COLOR
• Let 𝐶 = {𝑅, 𝐺, 𝐵}.

• As we encode satisfying assignments (of 𝜑)
as 3-colorings (of 𝐺𝜑), red will intuitively
mean false, green is true, and blue is the
neutral third color.

• We start with a triangle called palette:

B

G R

• We may suppose that the palette is colored
as shown (otherwise rename the colors).

3-COLOR
• Let 𝐶 = {𝑅, 𝐺, 𝐵}.
• As we encode satisfying assignments (of 𝜑)
as 3-colorings (of 𝐺𝜑), red will intuitively
mean false, green is true, and blue is the
neutral third color.

• We start with a triangle called palette:

B

G R

• We may suppose that the palette is colored
as shown (otherwise rename the colors).

3-COLOR
• Let 𝐶 = {𝑅, 𝐺, 𝐵}.
• As we encode satisfying assignments (of 𝜑)
as 3-colorings (of 𝐺𝜑), red will intuitively
mean false, green is true, and blue is the
neutral third color.

• We start with a triangle called palette:

B

G R

• We may suppose that the palette is colored
as shown (otherwise rename the colors).

3-COLOR
• Let 𝐶 = {𝑅, 𝐺, 𝐵}.
• As we encode satisfying assignments (of 𝜑)
as 3-colorings (of 𝐺𝜑), red will intuitively
mean false, green is true, and blue is the
neutral third color.

• We start with a triangle called palette:

B

G R

• We may suppose that the palette is colored
as shown (otherwise rename the colors).

3-COLOR: Modelling Assignments
Next, we introduce a pair of vertices (𝑥 and ̄𝑥)
for each variable, and connect them as shown:

B

G R

𝑥 𝑥

𝑦 𝑦

𝑧 𝑧
…

3-COLOR: Modelling Assignments

• For each variable 𝑥, the vertices 𝑥, ̄𝑥, and 𝐵
form a triangle.

• Thus,
either 𝑥 is green and ̄𝑥 is red (𝑥 is true),
or 𝑥 is red and ̄𝑥 is green (𝑥 is false).

• Each correct 3-coloring of the graph we
have so far corresponds to a truth
assignment.

• Now we add constraints so that the
assignment satisfies the 3-CNF 𝜑.

3-COLOR: Modelling Assignments

• For each variable 𝑥, the vertices 𝑥, ̄𝑥, and 𝐵
form a triangle.

• Thus,
either 𝑥 is green and ̄𝑥 is red (𝑥 is true),
or 𝑥 is red and ̄𝑥 is green (𝑥 is false).

• Each correct 3-coloring of the graph we
have so far corresponds to a truth
assignment.

• Now we add constraints so that the
assignment satisfies the 3-CNF 𝜑.

3-COLOR: Modelling Assignments

• For each variable 𝑥, the vertices 𝑥, ̄𝑥, and 𝐵
form a triangle.

• Thus,
either 𝑥 is green and ̄𝑥 is red (𝑥 is true),
or 𝑥 is red and ̄𝑥 is green (𝑥 is false).

• Each correct 3-coloring of the graph we
have so far corresponds to a truth
assignment.

• Now we add constraints so that the
assignment satisfies the 3-CNF 𝜑.

3-COLOR: Modelling Assignments

• For each variable 𝑥, the vertices 𝑥, ̄𝑥, and 𝐵
form a triangle.

• Thus,
either 𝑥 is green and ̄𝑥 is red (𝑥 is true),
or 𝑥 is red and ̄𝑥 is green (𝑥 is false).

• Each correct 3-coloring of the graph we
have so far corresponds to a truth
assignment.

• Now we add constraints so that the
assignment satisfies the 3-CNF 𝜑.

3-COLOR: Satisfying a 2-Clause
We start with modelling a 2-clause, e.g., ̄𝑥 ∨ 𝑦.

B

G R

𝑥 𝑥

𝑦 𝑦

𝑧 𝑧
…

𝑑

Claim: Vertex 𝑑 can be colored in green if and
only if ̄𝑥 is green and 𝑦 is green (maybe both).

3-COLOR: Satisfying a 2-Clause
We start with modelling a 2-clause, e.g., ̄𝑥 ∨ 𝑦.

B

G R

𝑥 𝑥

𝑦 𝑦

𝑧 𝑧
…

𝑑

Claim: Vertex 𝑑 can be colored in green if and
only if ̄𝑥 is green and 𝑦 is green (maybe both).

3-COLOR: Satisfying a 2-Clause

If ̄𝑥 or 𝑦 is green, then we may color as follows:

B

G R

𝑥 𝑥

𝑦 𝑦

𝑧 𝑧
…

𝑑

3-COLOR: Satisfying a 2-Clause

If ̄𝑥 or 𝑦 is green, then we may color as follows:

B

G R

𝑥 𝑥

𝑦 𝑦

𝑧 𝑧
…

𝑑

3-COLOR: Satisfying a 2-Clause
If both ̄𝑥 and 𝑦 are red, then one of the two
unnamed vertices should be green, which
prevents 𝑑 from being green.

B

G R

𝑥 𝑥

𝑦 𝑦

𝑧 𝑧
…

𝑑

3-COLOR: Satisfying a 2-Clause
If both ̄𝑥 and 𝑦 are red, then one of the two
unnamed vertices should be green, which
prevents 𝑑 from being green.

B

G R

𝑥 𝑥

𝑦 𝑦

𝑧 𝑧
…

𝑑

3-COLOR: Satisfying a 3-Clause
Now for a 3-clause, e.g., 𝐶𝑗 = ̄𝑥 ∨ 𝑦 ∨ ̄𝑧, we copy
the triangle once more:

B

G R

𝑥 𝑥

𝑦 𝑦

𝑧 𝑧
…

𝑑

𝑐𝑗

3-COLOR: Satisfying a 3-Clause
• Here 𝑑 corresponds to ̄𝑥 ∨ 𝑦, and can be
made green if and only if ̄𝑥 ∨ 𝑦.

• In the same way, 𝑐𝑗 corresponds to
𝐶𝑗 = (̄𝑥 ∨ 𝑦) ∨ ̄𝑧.

• We introduce such a construction with 𝑐𝑗
on top for each 3-clause 𝐶𝑗.

• For 2-clauses we use just one triangle, and for
a 1-clause 𝑐𝑗 is just 𝑥 or 𝑥̄.

• Finally, we connect each 𝑐𝑗 to both 𝑅 and
𝐵, in order to enforce 𝑐𝑗 being green.

• The resulting graph 𝐺𝜑 is 3-colorable if and
only if 𝜑 is satisfiable.

3-COLOR: Satisfying a 3-Clause
• Here 𝑑 corresponds to ̄𝑥 ∨ 𝑦, and can be
made green if and only if ̄𝑥 ∨ 𝑦.

• In the same way, 𝑐𝑗 corresponds to
𝐶𝑗 = (̄𝑥 ∨ 𝑦) ∨ ̄𝑧.

• We introduce such a construction with 𝑐𝑗
on top for each 3-clause 𝐶𝑗.

• For 2-clauses we use just one triangle, and for
a 1-clause 𝑐𝑗 is just 𝑥 or 𝑥̄.

• Finally, we connect each 𝑐𝑗 to both 𝑅 and
𝐵, in order to enforce 𝑐𝑗 being green.

• The resulting graph 𝐺𝜑 is 3-colorable if and
only if 𝜑 is satisfiable.

3-COLOR: Satisfying a 3-Clause
• Here 𝑑 corresponds to ̄𝑥 ∨ 𝑦, and can be
made green if and only if ̄𝑥 ∨ 𝑦.

• In the same way, 𝑐𝑗 corresponds to
𝐶𝑗 = (̄𝑥 ∨ 𝑦) ∨ ̄𝑧.

• We introduce such a construction with 𝑐𝑗
on top for each 3-clause 𝐶𝑗.

• For 2-clauses we use just one triangle, and for
a 1-clause 𝑐𝑗 is just 𝑥 or 𝑥̄.

• Finally, we connect each 𝑐𝑗 to both 𝑅 and
𝐵, in order to enforce 𝑐𝑗 being green.

• The resulting graph 𝐺𝜑 is 3-colorable if and
only if 𝜑 is satisfiable.

3-COLOR: Satisfying a 3-Clause
• Here 𝑑 corresponds to ̄𝑥 ∨ 𝑦, and can be
made green if and only if ̄𝑥 ∨ 𝑦.

• In the same way, 𝑐𝑗 corresponds to
𝐶𝑗 = (̄𝑥 ∨ 𝑦) ∨ ̄𝑧.

• We introduce such a construction with 𝑐𝑗
on top for each 3-clause 𝐶𝑗.

• For 2-clauses we use just one triangle, and for
a 1-clause 𝑐𝑗 is just 𝑥 or 𝑥̄.

• Finally, we connect each 𝑐𝑗 to both 𝑅 and
𝐵, in order to enforce 𝑐𝑗 being green.

• The resulting graph 𝐺𝜑 is 3-colorable if and
only if 𝜑 is satisfiable.

3-COLOR: Satisfying a 3-Clause
• Here 𝑑 corresponds to ̄𝑥 ∨ 𝑦, and can be
made green if and only if ̄𝑥 ∨ 𝑦.

• In the same way, 𝑐𝑗 corresponds to
𝐶𝑗 = (̄𝑥 ∨ 𝑦) ∨ ̄𝑧.

• We introduce such a construction with 𝑐𝑗
on top for each 3-clause 𝐶𝑗.

• For 2-clauses we use just one triangle, and for
a 1-clause 𝑐𝑗 is just 𝑥 or 𝑥̄.

• Finally, we connect each 𝑐𝑗 to both 𝑅 and
𝐵, in order to enforce 𝑐𝑗 being green.

• The resulting graph 𝐺𝜑 is 3-colorable if and
only if 𝜑 is satisfiable.

3-COLOR: Satisfying a 3-Clause
• Here 𝑑 corresponds to ̄𝑥 ∨ 𝑦, and can be
made green if and only if ̄𝑥 ∨ 𝑦.

• In the same way, 𝑐𝑗 corresponds to
𝐶𝑗 = (̄𝑥 ∨ 𝑦) ∨ ̄𝑧.

• We introduce such a construction with 𝑐𝑗
on top for each 3-clause 𝐶𝑗.

• For 2-clauses we use just one triangle, and for
a 1-clause 𝑐𝑗 is just 𝑥 or 𝑥̄.

• Finally, we connect each 𝑐𝑗 to both 𝑅 and
𝐵, in order to enforce 𝑐𝑗 being green.

• The resulting graph 𝐺𝜑 is 3-colorable if and
only if 𝜑 is satisfiable.

Course Overview
• This course is a quick intro into the ideas
of discrete mathematics and complexity
theory, for the use in data science.

• Discrete objects can be encoded as words
over {0, 1} (or, more generally, over a finite
alphabet Σ).

• An algorithm takes such a word as its
input, and, in the simple case, returns
another word as the output.

• We have also considered more sophisticated
behaviour, e.g., algorithms with delays.

Course Overview
• This course is a quick intro into the ideas
of discrete mathematics and complexity
theory, for the use in data science.

• Discrete objects can be encoded as words
over {0, 1} (or, more generally, over a finite
alphabet Σ).

• An algorithm takes such a word as its
input, and, in the simple case, returns
another word as the output.

• We have also considered more sophisticated
behaviour, e.g., algorithms with delays.

Course Overview
• This course is a quick intro into the ideas
of discrete mathematics and complexity
theory, for the use in data science.

• Discrete objects can be encoded as words
over {0, 1} (or, more generally, over a finite
alphabet Σ).

• An algorithm takes such a word as its
input, and, in the simple case, returns
another word as the output.

• We have also considered more sophisticated
behaviour, e.g., algorithms with delays.

Course Overview
• This course is a quick intro into the ideas
of discrete mathematics and complexity
theory, for the use in data science.

• Discrete objects can be encoded as words
over {0, 1} (or, more generally, over a finite
alphabet Σ).

• An algorithm takes such a word as its
input, and, in the simple case, returns
another word as the output.

• We have also considered more sophisticated
behaviour, e.g., algorithms with delays.

Course Overview

• Thus, an algorithm computes a function

𝑓∶ {0, 1}∗ → {0, 1}∗,

and such functions are called computable.

• We also take care of the running time of
the algorithm.

• A reasonable notion of “effectivity” is
polynomial time computation, where
computing 𝑓(𝑥) takes ≤ 𝑝(|𝑥|) steps
(where 𝑝 is a fixed polynomial).

Course Overview

• Thus, an algorithm computes a function

𝑓∶ {0, 1}∗ → {0, 1}∗,

and such functions are called computable.
• We also take care of the running time of
the algorithm.

• A reasonable notion of “effectivity” is
polynomial time computation, where
computing 𝑓(𝑥) takes ≤ 𝑝(|𝑥|) steps
(where 𝑝 is a fixed polynomial).

Course Overview

• Thus, an algorithm computes a function

𝑓∶ {0, 1}∗ → {0, 1}∗,

and such functions are called computable.
• We also take care of the running time of
the algorithm.

• A reasonable notion of “effectivity” is
polynomial time computation, where
computing 𝑓(𝑥) takes ≤ 𝑝(|𝑥|) steps
(where 𝑝 is a fixed polynomial).

Course Overview

• An algorithmic problem is a question
whether a given function 𝑓 is computable,
and if it is, whether it is computable
effectively.

• Special case: decision problem, where the
output is just one bit (𝑓∶ {0, 1}∗ → {0, 1}).

• Another way is to express a decision
problem as a subset (predicate)
𝐴 ⊆ {0, 1}∗, where 𝐴 = {𝑥 ∣ 𝑓(𝑥) = 1}.

Course Overview

• An algorithmic problem is a question
whether a given function 𝑓 is computable,
and if it is, whether it is computable
effectively.

• Special case: decision problem, where the
output is just one bit (𝑓∶ {0, 1}∗ → {0, 1}).

• Another way is to express a decision
problem as a subset (predicate)
𝐴 ⊆ {0, 1}∗, where 𝐴 = {𝑥 ∣ 𝑓(𝑥) = 1}.

Course Overview

• An algorithmic problem is a question
whether a given function 𝑓 is computable,
and if it is, whether it is computable
effectively.

• Special case: decision problem, where the
output is just one bit (𝑓∶ {0, 1}∗ → {0, 1}).

• Another way is to express a decision
problem as a subset (predicate)
𝐴 ⊆ {0, 1}∗, where 𝐴 = {𝑥 ∣ 𝑓(𝑥) = 1}.

Course Overview

• A decision problem belongs to class P, if 𝑓
is polynomially computable.

• The next higher complexity class is NP
(“non-deterministically polynomial”).

• Def. 1: the problem is in NP, if there is a
non-deterministic polynomial-time
algorithm, such that 𝑥 ∈ 𝐴 iff the algorithm
yields 1 on at least one path (“angelic
choice”).

Course Overview

• A decision problem belongs to class P, if 𝑓
is polynomially computable.

• The next higher complexity class is NP
(“non-deterministically polynomial”).

• Def. 1: the problem is in NP, if there is a
non-deterministic polynomial-time
algorithm, such that 𝑥 ∈ 𝐴 iff the algorithm
yields 1 on at least one path (“angelic
choice”).

Course Overview

• A decision problem belongs to class P, if 𝑓
is polynomially computable.

• The next higher complexity class is NP
(“non-deterministically polynomial”).

• Def. 1: the problem is in NP, if there is a
non-deterministic polynomial-time
algorithm, such that 𝑥 ∈ 𝐴 iff the algorithm
yields 1 on at least one path (“angelic
choice”).

Course Overview

• Def. 2:

𝑥 ∈ 𝐴 ⟺ ∃𝑦 (|𝑦| ≤ 𝑝(|𝑥|) & 𝑅(𝑥, 𝑦)),

where 𝑅 ∈ P.

• In this definition, the statement 𝑥 ∈ 𝐴 is
certified by a witness 𝑦.

• Any problem from NP is algorithmically
solvable (brute-force search for witness).

• The model case is satisfiability of Boolean
formulae (SAT).

Course Overview

• Def. 2:

𝑥 ∈ 𝐴 ⟺ ∃𝑦 (|𝑦| ≤ 𝑝(|𝑥|) & 𝑅(𝑥, 𝑦)),

where 𝑅 ∈ P.
• In this definition, the statement 𝑥 ∈ 𝐴 is
certified by a witness 𝑦.

• Any problem from NP is algorithmically
solvable (brute-force search for witness).

• The model case is satisfiability of Boolean
formulae (SAT).

Course Overview

• Def. 2:

𝑥 ∈ 𝐴 ⟺ ∃𝑦 (|𝑦| ≤ 𝑝(|𝑥|) & 𝑅(𝑥, 𝑦)),

where 𝑅 ∈ P.
• In this definition, the statement 𝑥 ∈ 𝐴 is
certified by a witness 𝑦.

• Any problem from NP is algorithmically
solvable (brute-force search for witness).

• The model case is satisfiability of Boolean
formulae (SAT).

Course Overview

• Def. 2:

𝑥 ∈ 𝐴 ⟺ ∃𝑦 (|𝑦| ≤ 𝑝(|𝑥|) & 𝑅(𝑥, 𝑦)),

where 𝑅 ∈ P.
• In this definition, the statement 𝑥 ∈ 𝐴 is
certified by a witness 𝑦.

• Any problem from NP is algorithmically
solvable (brute-force search for witness).

• The model case is satisfiability of Boolean
formulae (SAT).

Course Overview

• A Boolean formula is built from a set of
variables Var and constants 0 and 1 using
Boolean operations: ∨, ∧, ¬, →.

• An assignment (truth assignment) is a
function 𝛼∶ Var → {0, 1}.

• 𝛼 is a satisfying assignment for formula 𝜑,
if the value of 𝜑 under 𝛼 is 1 (true).

• Checking this condition is easy
(polynomial); finding a satisfying
assignment for a given 𝜑 could be hard.

Course Overview

• A Boolean formula is built from a set of
variables Var and constants 0 and 1 using
Boolean operations: ∨, ∧, ¬, →.

• An assignment (truth assignment) is a
function 𝛼∶ Var → {0, 1}.

• 𝛼 is a satisfying assignment for formula 𝜑,
if the value of 𝜑 under 𝛼 is 1 (true).

• Checking this condition is easy
(polynomial); finding a satisfying
assignment for a given 𝜑 could be hard.

Course Overview

• A Boolean formula is built from a set of
variables Var and constants 0 and 1 using
Boolean operations: ∨, ∧, ¬, →.

• An assignment (truth assignment) is a
function 𝛼∶ Var → {0, 1}.

• 𝛼 is a satisfying assignment for formula 𝜑,
if the value of 𝜑 under 𝛼 is 1 (true).

• Checking this condition is easy
(polynomial); finding a satisfying
assignment for a given 𝜑 could be hard.

Course Overview

• A Boolean formula is built from a set of
variables Var and constants 0 and 1 using
Boolean operations: ∨, ∧, ¬, →.

• An assignment (truth assignment) is a
function 𝛼∶ Var → {0, 1}.

• 𝛼 is a satisfying assignment for formula 𝜑,
if the value of 𝜑 under 𝛼 is 1 (true).

• Checking this condition is easy
(polynomial); finding a satisfying
assignment for a given 𝜑 could be hard.

Course Overview
• Unfortunately, we do not know that P ≠ NP.

• It is possible that P = NP, then SAT is
polynomial.

• We show “hardness” of SAT by a conditional
argument, comparing decision problems by
their complexity.

• For two problems 𝐴, 𝐵 ⊆ {0, 1}∗, we say

𝐴 ≤𝑃
𝑚 𝐵 ⟺ ∀𝑥 (𝑥 ∈ 𝐴 ⟺ 𝑓(𝑥) ∈ 𝐵)

for some polynomially computable
function 𝑓 (polynomial Carp reduction).

Course Overview
• Unfortunately, we do not know that P ≠ NP.

• It is possible that P = NP, then SAT is
polynomial.

• We show “hardness” of SAT by a conditional
argument, comparing decision problems by
their complexity.

• For two problems 𝐴, 𝐵 ⊆ {0, 1}∗, we say

𝐴 ≤𝑃
𝑚 𝐵 ⟺ ∀𝑥 (𝑥 ∈ 𝐴 ⟺ 𝑓(𝑥) ∈ 𝐵)

for some polynomially computable
function 𝑓 (polynomial Carp reduction).

Course Overview
• Unfortunately, we do not know that P ≠ NP.

• It is possible that P = NP, then SAT is
polynomial.

• We show “hardness” of SAT by a conditional
argument, comparing decision problems by
their complexity.

• For two problems 𝐴, 𝐵 ⊆ {0, 1}∗, we say

𝐴 ≤𝑃
𝑚 𝐵 ⟺ ∀𝑥 (𝑥 ∈ 𝐴 ⟺ 𝑓(𝑥) ∈ 𝐵)

for some polynomially computable
function 𝑓 (polynomial Carp reduction).

Course Overview
• Unfortunately, we do not know that P ≠ NP.

• It is possible that P = NP, then SAT is
polynomial.

• We show “hardness” of SAT by a conditional
argument, comparing decision problems by
their complexity.

• For two problems 𝐴, 𝐵 ⊆ {0, 1}∗, we say

𝐴 ≤𝑃
𝑚 𝐵 ⟺ ∀𝑥 (𝑥 ∈ 𝐴 ⟺ 𝑓(𝑥) ∈ 𝐵)

for some polynomially computable
function 𝑓 (polynomial Carp reduction).

Course Overview

• On decision problems (in particular, on the
NP class), ≤𝑃

𝑚 is a preorder.

• The subclass P forms a cluster of
≤𝑃

𝑚-equivalent problems on the bottom of
NP.

• There are also two degenerate problems,
which are even simpler: 𝐴 = ∅ and
𝐴 = {0, 1}∗ (“always no” or “always yes”).

• On top of NP, there are NP-complete
problems—the hardest ones, w.r.t. ≤𝑃

𝑚.

Course Overview

• On decision problems (in particular, on the
NP class), ≤𝑃

𝑚 is a preorder.
• The subclass P forms a cluster of

≤𝑃
𝑚-equivalent problems on the bottom of

NP.

• There are also two degenerate problems,
which are even simpler: 𝐴 = ∅ and
𝐴 = {0, 1}∗ (“always no” or “always yes”).

• On top of NP, there are NP-complete
problems—the hardest ones, w.r.t. ≤𝑃

𝑚.

Course Overview

• On decision problems (in particular, on the
NP class), ≤𝑃

𝑚 is a preorder.
• The subclass P forms a cluster of

≤𝑃
𝑚-equivalent problems on the bottom of

NP.
• There are also two degenerate problems,
which are even simpler: 𝐴 = ∅ and
𝐴 = {0, 1}∗ (“always no” or “always yes”).

• On top of NP, there are NP-complete
problems—the hardest ones, w.r.t. ≤𝑃

𝑚.

Course Overview

• On decision problems (in particular, on the
NP class), ≤𝑃

𝑚 is a preorder.
• The subclass P forms a cluster of

≤𝑃
𝑚-equivalent problems on the bottom of

NP.
• There are also two degenerate problems,
which are even simpler: 𝐴 = ∅ and
𝐴 = {0, 1}∗ (“always no” or “always yes”).

• On top of NP, there are NP-complete
problems—the hardest ones, w.r.t. ≤𝑃

𝑚.

Course Overview

• A problem 𝐵 is NP-hard, if for any problem
𝐴 ∈ NP we have

𝐴 ≤𝑃
𝑚 𝐵.

• A problem is NP-complete if it is NP-hard
and belongs to NP.

• For example, the validity problem for
first-order formulae (with quantifiers) is
NP-hard, but not NP-complete (being
undecidable).

Course Overview

• A problem 𝐵 is NP-hard, if for any problem
𝐴 ∈ NP we have

𝐴 ≤𝑃
𝑚 𝐵.

• A problem is NP-complete if it is NP-hard
and belongs to NP.

• For example, the validity problem for
first-order formulae (with quantifiers) is
NP-hard, but not NP-complete (being
undecidable).

Course Overview

• A problem 𝐵 is NP-hard, if for any problem
𝐴 ∈ NP we have

𝐴 ≤𝑃
𝑚 𝐵.

• A problem is NP-complete if it is NP-hard
and belongs to NP.

• For example, the validity problem for
first-order formulae (with quantifiers) is
NP-hard, but not NP-complete (being
undecidable).

Course Overview

Complexity landscape, if P ≠ NP:

Course Overview
• The existence of NP-complete (“maximal”)
problems in NP is shown by presenting a
concrete example.

Theorem (Cook–Levin)
SAT is NP-complete.

• In order to prove 𝐴 ≤𝑃
𝑚 SAT for an arbitrary

𝐴 ∈ NP, we encode the protocol of a
non-deterministic Turing machine computing
𝐴 as a Boolean vector, and write a Boolean
formula 𝜑𝐴,𝑥 which states its correctness.

• 𝑥 ∈ 𝐴 ⟺ 𝜑𝐴,𝑥 is satisfiable.

Course Overview
• The existence of NP-complete (“maximal”)
problems in NP is shown by presenting a
concrete example.

Theorem (Cook–Levin)
SAT is NP-complete.

• In order to prove 𝐴 ≤𝑃
𝑚 SAT for an arbitrary

𝐴 ∈ NP, we encode the protocol of a
non-deterministic Turing machine computing
𝐴 as a Boolean vector, and write a Boolean
formula 𝜑𝐴,𝑥 which states its correctness.

• 𝑥 ∈ 𝐴 ⟺ 𝜑𝐴,𝑥 is satisfiable.

Course Overview
• The existence of NP-complete (“maximal”)
problems in NP is shown by presenting a
concrete example.

Theorem (Cook–Levin)
SAT is NP-complete.

• In order to prove 𝐴 ≤𝑃
𝑚 SAT for an arbitrary

𝐴 ∈ NP, we encode the protocol of a
non-deterministic Turing machine computing
𝐴 as a Boolean vector, and write a Boolean
formula 𝜑𝐴,𝑥 which states its correctness.

• 𝑥 ∈ 𝐴 ⟺ 𝜑𝐴,𝑥 is satisfiable.

Course Overview
• The existence of NP-complete (“maximal”)
problems in NP is shown by presenting a
concrete example.

Theorem (Cook–Levin)
SAT is NP-complete.

• In order to prove 𝐴 ≤𝑃
𝑚 SAT for an arbitrary

𝐴 ∈ NP, we encode the protocol of a
non-deterministic Turing machine computing
𝐴 as a Boolean vector, and write a Boolean
formula 𝜑𝐴,𝑥 which states its correctness.

• 𝑥 ∈ 𝐴 ⟺ 𝜑𝐴,𝑥 is satisfiable.

Course Overview
• Potentially simpler subproblems of SAT are
obtained by considering special classes of
Boolean formulae.

• A CNF (conjunctive normal form) is a big
conjunction of clauses of the form
¬𝑥 ∨ 𝑦 ∨ ¬𝑧.

• In a 𝑘-CNF, each clause includes ≤ 𝑘
literals.

• A DNF (disjunctive normal form) is a big
disjunction of clauses of the form
¬𝑥 ∧ 𝑦 ∧ ¬𝑧.

Course Overview
• Potentially simpler subproblems of SAT are
obtained by considering special classes of
Boolean formulae.

• A CNF (conjunctive normal form) is a big
conjunction of clauses of the form
¬𝑥 ∨ 𝑦 ∨ ¬𝑧.

• In a 𝑘-CNF, each clause includes ≤ 𝑘
literals.

• A DNF (disjunctive normal form) is a big
disjunction of clauses of the form
¬𝑥 ∧ 𝑦 ∧ ¬𝑧.

Course Overview
• Potentially simpler subproblems of SAT are
obtained by considering special classes of
Boolean formulae.

• A CNF (conjunctive normal form) is a big
conjunction of clauses of the form
¬𝑥 ∨ 𝑦 ∨ ¬𝑧.

• In a 𝑘-CNF, each clause includes ≤ 𝑘
literals.

• A DNF (disjunctive normal form) is a big
disjunction of clauses of the form
¬𝑥 ∧ 𝑦 ∧ ¬𝑧.

Course Overview
• Potentially simpler subproblems of SAT are
obtained by considering special classes of
Boolean formulae.

• A CNF (conjunctive normal form) is a big
conjunction of clauses of the form
¬𝑥 ∨ 𝑦 ∨ ¬𝑧.

• In a 𝑘-CNF, each clause includes ≤ 𝑘
literals.

• A DNF (disjunctive normal form) is a big
disjunction of clauses of the form
¬𝑥 ∧ 𝑦 ∧ ¬𝑧.

Course Overview

• Any Boolean formula can be translated into
an equivalent CNF or DNF, but this
translation is (in general) not polynomial.

• DNF-SAT is polynomially solvable: one just
has to find at least one non-contradictory
clause.

• For CNF-SAT, there is the resolution
method, which is a bit more advanced than
brute-force.

Course Overview

• Any Boolean formula can be translated into
an equivalent CNF or DNF, but this
translation is (in general) not polynomial.

• DNF-SAT is polynomially solvable: one just
has to find at least one non-contradictory
clause.

• For CNF-SAT, there is the resolution
method, which is a bit more advanced than
brute-force.

Course Overview

• Any Boolean formula can be translated into
an equivalent CNF or DNF, but this
translation is (in general) not polynomial.

• DNF-SAT is polynomially solvable: one just
has to find at least one non-contradictory
clause.

• For CNF-SAT, there is the resolution
method, which is a bit more advanced than
brute-force.

Course Overview

• In the resolution method, the CNF is
saturated by applying the resolution rule:

𝐴 ∨ 𝑝 ¬𝑝 ∨ 𝐵
𝐴 ∨ 𝐵

• Completeness theorem: the CNF is
satisfiable iff it does not include the empty
clause (“false”) after saturation.

• Unfortunately, for 𝑘 ≥ 3 saturation can lead
to exponential blowup.

Course Overview

• In the resolution method, the CNF is
saturated by applying the resolution rule:

𝐴 ∨ 𝑝 ¬𝑝 ∨ 𝐵
𝐴 ∨ 𝐵

• Completeness theorem: the CNF is
satisfiable iff it does not include the empty
clause (“false”) after saturation.

• Unfortunately, for 𝑘 ≥ 3 saturation can lead
to exponential blowup.

Course Overview

• In the resolution method, the CNF is
saturated by applying the resolution rule:

𝐴 ∨ 𝑝 ¬𝑝 ∨ 𝐵
𝐴 ∨ 𝐵

• Completeness theorem: the CNF is
satisfiable iff it does not include the empty
clause (“false”) after saturation.

• Unfortunately, for 𝑘 ≥ 3 saturation can lead
to exponential blowup.

Course Overview
Theorem (Cook–Levin, Tseitin)
3-SAT is NP-complete.

• In contrast, 2-SAT belongs to P, since
applying resolutions to 2-clauses yields
also 2-clauses, and there are a polynomial
number of such.

• Also, resolution allows to solve the search
problem for 2-SAT (yield at least one
satisfying assignment), or yield all
satisfying assignments with polynomial
delay.

Course Overview
Theorem (Cook–Levin, Tseitin)
3-SAT is NP-complete.

• In contrast, 2-SAT belongs to P, since
applying resolutions to 2-clauses yields
also 2-clauses, and there are a polynomial
number of such.

• Also, resolution allows to solve the search
problem for 2-SAT (yield at least one
satisfying assignment), or yield all
satisfying assignments with polynomial
delay.

Course Overview
Theorem (Cook–Levin, Tseitin)
3-SAT is NP-complete.

• In contrast, 2-SAT belongs to P, since
applying resolutions to 2-clauses yields
also 2-clauses, and there are a polynomial
number of such.

• Also, resolution allows to solve the search
problem for 2-SAT (yield at least one
satisfying assignment), or yield all
satisfying assignments with polynomial
delay.

Course Overview
• The second half of the course is devoted to
graphs.

• Graphs and their generalisations (e.g.,
hypergraphs) are a generic representation
of structured data in numerous
applications: social networks,
bioinformatics, GIS, network topology, etc.

• Graph theory provides many examples of
problems from the NP class: “given a graph
𝐺, determine whether it includes some
specific substructure”.

Course Overview
• The second half of the course is devoted to
graphs.

• Graphs and their generalisations (e.g.,
hypergraphs) are a generic representation
of structured data in numerous
applications: social networks,
bioinformatics, GIS, network topology, etc.

• Graph theory provides many examples of
problems from the NP class: “given a graph
𝐺, determine whether it includes some
specific substructure”.

Course Overview
• The second half of the course is devoted to
graphs.

• Graphs and their generalisations (e.g.,
hypergraphs) are a generic representation
of structured data in numerous
applications: social networks,
bioinformatics, GIS, network topology, etc.

• Graph theory provides many examples of
problems from the NP class: “given a graph
𝐺, determine whether it includes some
specific substructure”.

Course Overview

• For some of these problems, we proved
that they belong to P: finding an Euler path
/ cycle; 2-colorability (via reduction to
2-SAT).

• For others, we proved NP-completeness.
These include 3-COLOR (and 𝑘-COLOR for
𝑘 ≥ 3); Hamitonian path / cycle search
(both directed and undirected); subgraph
isomorphism and its special cases (CLIQUE,
INDSET, VERTEXCOVER).

Course Overview

• For some of these problems, we proved
that they belong to P: finding an Euler path
/ cycle; 2-colorability (via reduction to
2-SAT).

• For others, we proved NP-completeness.
These include 3-COLOR (and 𝑘-COLOR for
𝑘 ≥ 3); Hamitonian path / cycle search
(both directed and undirected); subgraph
isomorphism and its special cases (CLIQUE,
INDSET, VERTEXCOVER).

Course Overview

• Finally, the graph isomorphism problem is
neither known to belong to P, neither
known to be NP-complete.

• For proving NP-completeness, we usually
construct a reduction from 3-SAT, e.g.:

3-SAT ≤𝑃
𝑚 3-COLOR,

while for proving polynomial solvability the
opposite reduction can be used:

2-COLOR ≤𝑃
𝑚 2-SAT.

