NP-Completeness of 3-COLOR

Stepan Kuznetsov

Discrete Math Bridging Course, HSE University

k-COLOR

- A correct coloring of an undirected graph
G = (V,E)in k colors is a function
c:V—C, where |C| =k
(eg,C ={1,...,k})
and for any (u,v) € E we have c(u) # c¢(v).

k-COLOR

- A correct coloring of an undirected graph
G = (V,E)in k colors is a function
c:V—C, where |C| =k
(eg,C ={1,...,k})
and for any (u,v) € E we have c(u) # c¢(v).

- The algorithmic problem k-COLOR:
determine whether a given graph G is
colorable in k colors.

k-COLOR

- A correct coloring of an undirected graph
G = (V,E)in k colors is a function
c:V—C, where |C| =k
(eg,C ={1,...,k})
and for any (u,v) € E we have c(u) # c¢(v).

- The algorithmic problem k-COLOR:
determine whether a given graph G is
colorable in k colors.

- We have

k-COLOR <2 (k -+ 1)-COLOR,
thus, complexity of k-COLOR grows with k.

k-COLOR
- k-COLOR € NP for any k.

k-COLOR

- k-COLOR € NP for any k.
-+ 1-COLOR is trivial.

k-COLOR

- k-COLOR € NP for any k.
-+ 1-COLOR is trivial.
- Since
2-COLOR <P 2-SAT,

we have 2-COLOR € P.

k-COLOR

- k-COLOR € NP for any k.
- 1-COLOR is trivial.
- Since
2-COLOR g,{; 2-SAT,
we have 2-COLOR € P.
- For k£ = 3, we also have
3-COLOR < 3-SAT,

but this is just a particular case of Cook-Levin.

k-COLOR

- k-COLOR € NP for any k.
-+ 1-COLOR is trivial.
- Since
2-COLOR g,ﬁ 2-SAT,
we have 2-COLOR € P.
- For k£ = 3, we also have

3-COLOR <P 3-SAT,

but this is just a particular case of Cook-Levin.
- In order to prove NP-hardness of 3-COLOR,
we need the opposite reduction.

3-COLOR

Theorem

3-SAT <P 3-COLOR, and therefore 3-COLOR is
NP-complete.

3-COLOR
Theorem

3-SAT <P 3-COLOR, and therefore 3-COLOR is
NP-complete.

- We need to construct a polynomially
computable reducing function

[Gy,

such that for any 3-CNF Boolean formula ¢
it is satisfiable if and only if the graph G,
Is colorable in 3 colors.

3-COLOR
. Let C = {R,G, B}.

3-COLOR

- Let C = {R,G, B}.

- As we encode satisfying assignments (of)
as 3-colorings (of Ggo), red will intuitively
mean false, green is true, and blue is the
neutral third color.

3-COLOR

- Let C = {R,G, B}.

- As we encode satisfying assignments (of)
as 3-colorings (of Ggo), red will intuitively
mean false, green is true, and blue is the
neutral third color.

- We start with a triangle called palette:

3-COLOR

- Let C = {R,G, B}.

- As we encode satisfying assignments (of)
as 3-colorings (of Ggo), red will intuitively
mean false, green is true, and blue is the
neutral third color.

- We start with a triangle called palette:

- We may suppose that the palette is colored
as shown (otherwise rename the colors).

3-COLOR: Modelling Assignments

Next, we introduce a pair of vertices (z and z)
for each variable, and connect them as shown:

3-COLOR: Modelling Assignments

- For each variable z, the vertices z, z, and B
form a triangle.

3-COLOR: Modelling Assignments

- For each variable z, the vertices z, z, and B
form a triangle.

- Thus,
either z is green and z is red (z is true),
or z is red and z is green (x is false).

3-COLOR: Modelling Assignments

- For each variable z, the vertices z, z, and B
form a triangle.

- Thus,
either z is green and z is red (z is true),
or z is red and z is green (x is false).

- Each correct 3-coloring of the graph we
have so far corresponds to a truth
assignment.

3-COLOR: Modelling Assignments

- For each variable z, the vertices z, z, and B
form a triangle.

- Thus,
either z is green and z is red (z is true),
or z is red and z is green (x is false).

- Each correct 3-coloring of the graph we
have so far corresponds to a truth
assignment.

- Now we add constraints so that the
assignment satisfies the 3-CNF .

3-COLOR: Satisfying a 2-Clause

We start with modelling a 2-clause, e.g.,, x V .

3-COLOR: Satisfying a 2-Clause

We start with modelling a 2-clause, e.g.,, x V .

Claim: Vertex d can be colored in green if and
only if z is green and y is green (maybe both).

3-COLOR: Satisfying a 2-Clause

If z or y is green, then we may color as follows:

3-COLOR: Satisfying a 2-Clause

If z or y is green, then we may color as follows:

3-COLOR: Satisfying a 2-Clause

If both z and y are red, then one of the two
unnamed vertices should be green, which
prevents d from being green.

3-COLOR: Satisfying a 2-Clause

If both z and y are red, then one of the two
unnamed vertices should be green, which
prevents d from being green.

3-COLOR: Satisfying a 3-Clause

Now for a 3-clause, e.g, C; =1 VyV 2z we copy
the triangle once more:

3-COLOR: Satisfying a 3-Clause

- Here d corresponds to z V y, and can be
made green if and only if z V .

3-COLOR: Satisfying a 3-Clause

- Here d corresponds to z V gy, and can be
made green if and only if z V .
- In the same way, ¢, corresponds to

3-COLOR: Satisfying a 3-Clause

- Here d corresponds to z V gy, and can be
made green if and only if z V .

- In the same way, ¢, corresponds to
C,=@Vy)Vz

- We introduce such a construction with ¢

J
on top for each 3-clause C;.

3-COLOR: Satisfying a 3-Clause

- Here d corresponds to z V gy, and can be
made green if and only if z V .

- In the same way, ¢, corresponds to
C,=(xVy V2

- We introduce such a construction with ¢;

on top for each 3-clause C;.
- For 2-clauses we use just one triangle, and for
a 1-clause c; is just x or z.

3-COLOR: Satisfying a 3-Clause

- Here d corresponds to z V gy, and can be
made green if and only if z V .

- In the same way, ¢, corresponds to
C,=(xVy V2

- We introduce such a construction with ¢;

on top for each 3-clause C;.
- For 2-clauses we use just one triangle, and for
a 1-clause c; is just x or z.

- Finally, we connect each c; to both R and
B, in order to enforce c¢; being green.

3-COLOR: Satisfying a 3-Clause

- Here d corresponds to z V gy, and can be
made green if and only if z V .

- In the same way, ¢, corresponds to
C,=(xVy V2

- We introduce such a construction with ¢;

on top for each 3-clause C;.
- For 2-clauses we use just one triangle, and for
a 1-clause c; is just x or z.

- Finally, we connect each c; to both R and
B, in order to enforce c¢; being green.

- The resulting graph G, is 3-colorable if and
only If ¢ Is satisfiable.

Course Overview

- This course is a quick intro into the ideas
of discrete mathematics and complexity
theory, for the use in data science.

Course Overview

- This course is a quick intro into the ideas
of discrete mathematics and complexity
theory, for the use in data science.

- Discrete objects can be encoded as words
over {0,1} (or, more generally, over a finite
alphabet X).

Course Overview

- This course is a quick intro into the ideas
of discrete mathematics and complexity
theory, for the use in data science.

- Discrete objects can be encoded as words
over {0,1} (or, more generally, over a finite
alphabet X).

- An algorithm takes such a word as its
input, and, in the simple case, returns
another word as the output.

Course Overview

- This course is a quick intro into the ideas
of discrete mathematics and complexity
theory, for the use in data science.

- Discrete objects can be encoded as words
over {0,1} (or, more generally, over a finite
alphabet X).

- An algorithm takes such a word as its
input, and, in the simple case, returns

another word as the output.
- We have also considered more sophisticated
behaviour, e.g, algorithms with delays.

Course Overview

- Thus, an algorithm computes a function

f:40,1} = {0, 1},

and such functions are called computable.

Course Overview
- Thus, an algorithm computes a function
f:{0,1}* = {0, 1}7,

and such functions are called computable.

- We also take care of the running time of
the algorithm.

Course Overview

- Thus, an algorithm computes a function

f:40,1} = {0, 1},

and such functions are called computable.

- We also take care of the running time of
the algorithm.

- A reasonable notion of “effectivity” Is
polynomial time computation, where
computing f(z) takes < p(|x|) steps
(where p is a fixed polynomial).

Course Overview

- An algorithmic problem is a question
whether a given function fis computable,
and If it is, whether it is computable
effectively.

Course Overview

- An algorithmic problem is a question
whether a given function fis computable,
and If it is, whether it is computable
effectively.

- Special case: decision problem, where the
output is just one bit (f: {0,1}* — {0,1}).

Course Overview

- An algorithmic problem is a question
whether a given function fis computable,
and If it is, whether it is computable
effectively.

- Special case: decision problem, where the
output is just one bit (f: {0,1}* — {0,1}).
- Another way is to express a decision

problem as a subset (predicate)
A CH{0,1}*, where A= {z| f(z) =1}.

Course Overview

- A decision problem belongs to class P, if f
Is polynomially computable.

Course Overview

- A decision problem belongs to class P, if f
Is polynomially computable.

- The next higher complexity class is NP
(“non-deterministically polynomial”).

Course Overview

- A decision problem belongs to class P, if f
Is polynomially computable.

- The next higher complexity class is NP
(“non-deterministically polynomial”).

- Def. 1: the problem is in NP, if there is a
non-deterministic polynomial-time
algorithm, such that = € A iff the algorithm
yields 1 on at least one path (“angelic
choice”).

Course Overview
- Def. 2:
reA < Jy(lyl <plz]) & R(z,y)),

where R € P.

Course Overview
- Def. 2:
reA <= Jy(yl <p(lz]) & R(z,y)),

where R € P.

- In this definition, the statement x € A is
certified by a witness y,.

Course Overview
- Def. 2:
reA <= Jy(yl <p(lz]) & R(z,y)),

where R € P.

- In this definition, the statement x € A is
certified by a witness y,.

- Any problem from NP is algorithmically
solvable (brute-force search for witness).

Course Overview
- Def. 2:
reA <= Jy(yl <p(lz]) & R(z,y)),

where R € P.

- In this definition, the statement x € A is
certified by a witness y,.

- Any problem from NP is algorithmically
solvable (brute-force search for witness).

- The model case is satisfiability of Boolean
formulae (SAT).

Course Overview

- A Boolean formula is built from a set of
variables Var and constants 0 and 1 using
Boolean operations: Vv, A, =, —.

Course Overview

- A Boolean formula is built from a set of
variables Var and constants 0 and 1 using
Boolean operations: Vv, A, =, —.

- An assignment (truth assignment) is a
function a: Var — {0, 1}.

Course Overview

- A Boolean formula is built from a set of
variables Var and constants 0 and 1 using
Boolean operations: Vv, A, =, —.

- An assignment (truth assignment) is a
function a: Var — {0, 1}.

-« is a satisfying assignment for formula ¢,
if the value of ¢ under v is 1 (true).

Course Overview

- A Boolean formula is built from a set of
variables Var and constants 0 and 1 using
Boolean operations: Vv, A, =, —.

- An assignment (truth assignment) is a
function a: Var — {0, 1}.

-« is a satisfying assignment for formula ¢,
if the value of ¢ under v is 1 (true).

- Checking this condition is easy
(polynomial); finding a satisfying
assignment for a given ¢ could be hard.

Course Overview

- Unfortunately, we do not know that P # NP.

Course Overview

- Unfortunately, we do not know that P # NP.
- It is possible that P = NP, then SAT is
polynomial.

Course Overview

- Unfortunately, we do not know that P # NP.
- It is possible that P = NP, then SAT is
polynomial.

- We show “hardness” of SAT by a conditional
argument, comparing decision problems by
their complexity.

Course Overview

- Unfortunately, we do not know that P # NP.
- It is possible that P = NP, then SAT is
polynomial.

- We show “hardness” of SAT by a conditional
argument, comparing decision problems by
their complexity.

- For two problems A, B C {0, 1}*, we say

A<P B < Va(z € A < f(z) € B)

for some polynomially computable
function f (polynomial Carp reduction).

Course Overview

- On decision problems (in particular, on the
NP class), <P is a preorder.

Course Overview

- On decision problems (in particular, on the
NP class), <P is a preorder.

- The subclass P forms a cluster of
<P -equivalent problems on the bottom of
NP.

Course Overview

- On decision problems (in particular, on the
NP class), <P is a preorder.

- The subclass P forms a cluster of
<P -equivalent problems on the bottom of
NP.

- There are also two degenerate problems,
which are even simpler: A = and
A =1{0,1}* (“always no” or “always yes”).

Course Overview

- On decision problems (in particular, on the
NP class), <P is a preorder.

- The subclass P forms a cluster of
<P -equivalent problems on the bottom of
NP.

- There are also two degenerate problems,
which are even simpler: A = and
A =1{0,1}* (“always no” or “always yes”).
- On top of NP, there are NP-complete
problems—the hardest ones, w.rt. <.

Course Overview

- A problem B is NP-hard, if for any problem
A € NP we have

A <P B.

Course Overview

- A problem B is NP-hard, if for any problem
A € NP we have

A <P B.

- A problem is NP-complete if it is NP-hard
and belongs to NP.

Course Overview

- A problem B is NP-hard, if for any problem
A € NP we have

A<P B

- A problem is NP-complete if it is NP-hard

and belongs to NP.
For example, the validity problem for
first-order formulae (with quantifiers) is
NP-hard, but not NP-complete (being
undecidable).

Course Overview

Complexity landscape, if P # NP:

Course Overview

- The existence of NP-complete (“maximal”)
problems in NP is shown by presenting a
concrete example.

Course Overview

- The existence of NP-complete (“maximal”)
problems in NP is shown by presenting a
concrete example.

Theorem (Cook-Levin)
SAT is NP-complete.

Course Overview

- The existence of NP-complete (“maximal”)
problems in NP is shown by presenting a
concrete example.

Theorem (Cook-Levin)
SAT is NP-complete.

- In order to prove A <P SAT for an arbitrary
A € NP, we encode the protocol of a
non-deterministic Turing machine computing
A as a Boolean vector, and write a Boolean
formula ¢ 4 , which states its correctness.

Course Overview

- The existence of NP-complete (“maximal”)
problems in NP is shown by presenting a
concrete example.

Theorem (Cook-Levin)
SAT is NP-complete.

- In order to prove A <P SAT for an arbitrary
A € NP, we encode the protocol of a
non-deterministic Turing machine computing
A as a Boolean vector, and write a Boolean
formula ¢ 4 , which states its correctness.

- x €A = p,, issatisfiable.

Course Overview

- Potentially simpler subproblems of SAT are
obtained by considering special classes of
Boolean formulae.

Course Overview

- Potentially simpler subproblems of SAT are
obtained by considering special classes of
Boolean formulae.

- A CNF (conjunctive normal form) is a big
conjunction of clauses of the form
—rVyV -z

Course Overview

- Potentially simpler subproblems of SAT are
obtained by considering special classes of
Boolean formulae.

- A CNF (conjunctive normal form) is a big
conjunction of clauses of the form
—rVyV -z

- In a k-CNF, each clause includes < k
literals.

Course Overview

- Potentially simpler subproblems of SAT are
obtained by considering special classes of
Boolean formulae.

- A CNF (conjunctive normal form) is a big
conjunction of clauses of the form
—rVyV -z

- In a k-CNF, each clause includes < k
literals.

- A DNF (disjunctive normal form) is a big
disjunction of clauses of the form
r Ay Az

Course Overview

- Any Boolean formula can be translated into
an equivalent CNF or DNF, but this
translation is (in general) not polynomial.

Course Overview

- Any Boolean formula can be translated into
an equivalent CNF or DNF, but this
translation is (in general) not polynomial.

- DNF-SAT is polynomially solvable: one just

has to find at least one non-contradictory
clause.

Course Overview

- Any Boolean formula can be translated into
an equivalent CNF or DNF, but this
translation is (in general) not polynomial.

- DNF-SAT is polynomially solvable: one just
has to find at least one non-contradictory
clause.

- For CNF-SAT, there is the resolution

method, which is a bit more advanced than
brute-force.

Course Overview

- In the resolution method, the CNF is
saturated by applying the resolution rule:

AVp —pVB
AV B

Course Overview

- In the resolution method, the CNF is
saturated by applying the resolution rule:

AVp —pVB
AV B

- Completeness theorem: the CNF is
satisfiable Iff it does not include the empty
clause (“false”) after saturation.

Course Overview

- In the resolution method, the CNF is
saturated by applying the resolution rule:

AVp —pVB
AV B

- Completeness theorem: the CNF is
satisfiable Iff it does not include the empty
clause (“false”) after saturation.

- Unfortunately, for k > 3 saturation can lead
to exponential blowup.

Course Overview
Theorem (Cook-Levin, Tseitin)
3-SAT is NP-complete.

Course Overview
Theorem (Cook-Levin, Tseitin)
3-SAT is NP-complete.

- In contrast, 2-SAT belongs to P, since
applying resolutions to 2-clauses yields
also 2-clauses, and there are a polynomial
number of such.

Course Overview
Theorem (Cook-Levin, Tseitin)
3-SAT is NP-complete.

- In contrast, 2-SAT belongs to P, since
applying resolutions to 2-clauses yields
also 2-clauses, and there are a polynomial
number of such.

- Also, resolution allows to solve the search
problem for 2-SAT (yield at least one
satisfying assignment), or yield all
satisfying assignments with polynomial
delay.

Course Overview

- The second half of the course is devoted to
graphs.

Course Overview

- The second half of the course is devoted to
graphs.

- Graphs and their generalisations (e.g.,
hypergraphs) are a generic representation
of structured data in numerous
applications: social networks,
bioinformatics, GIS, network topology, etc.

Course Overview

- The second half of the course is devoted to
graphs.

- Graphs and their generalisations (e.g.,
hypergraphs) are a generic representation
of structured data in numerous
applications: social networks,
bioinformatics, GIS, network topology, etc.

- Graph theory provides many examples of
problems from the NP class: “given a graph
G, determine whether it includes some
specific substructure”.

Course Overview

- For some of these problems, we proved
that they belong to P: finding an Euler path
| cycle; 2-colorability (via reduction to
2-SAT).

Course Overview

- For some of these problems, we proved
that they belong to P: finding an Euler path
| cycle; 2-colorability (via reduction to
2-SAT).

- For others, we proved NP-completeness.
These include 3-COLOR (and k-COLOR for
k > 3); Hamitonian path / cycle search
(both directed and undirected); subgraph
isomorphism and its special cases (CLIQUE,
INDSET, VERTEXCOVER).

Course Overview

- Finally, the graph isomorphism problem is
neither known to belong to P, neither
known to be NP-complete.

- For proving NP-completeness, we usually
construct a reduction from 3-SAT, e.g.:

3-SAT <P 3-COLOR,

while for proving polynomial solvability the
opposite reduction can be used:

2-COLOR <P 2-SAT.

