NP-Completeness of 3-COLOR

Stepan Kuznetsov

Discrete Math Bridging Course, HSE University

• A **correct coloring** of an undirected graph G=(V,E) in k colors is a function $c\colon V\to C$, where |C|=k (e.g., $C=\{1,\ldots,k\}$) and for any $(u,v)\in E$ we have $c(u)\neq c(v)$.

- A correct coloring of an undirected graph G=(V,E) in k colors is a function $c\colon V\to C$, where |C|=k (e.g., $C=\{1,\ldots,k\}$) and for any $(u,v)\in E$ we have $c(u)\neq c(v)$.
- The algorithmic problem k-COLOR: determine whether a given graph G is colorable in k colors.

- A **correct coloring** of an undirected graph G=(V,E) in k colors is a function $c\colon V\to C$, where |C|=k (e.g., $C=\{1,\ldots,k\}$) and for any $(u,v)\in E$ we have $c(u)\neq c(v)$.
- The algorithmic problem k-COLOR: determine whether a given graph G is colorable in k colors.
- We have

$$k\text{-COLOR} \leq^P_m (k+1)\text{-COLOR},$$

thus, complexity of k-COLOR grows with k.

• k-COLOR \in NP for any k.

- k-COLOR \in NP for any k.
- 1-COLOR is trivial.

- k-COLOR \in NP for any k.
- 1-COLOR is trivial.
- Since

$$\text{2-COLOR} \leq^P_m \text{2-SAT},$$

we have 2-COLOR \in P.

- k-COLOR \in NP for any k.
- 1-COLOR is trivial.
- Since

$$2\text{-COLOR} \leq_m^P 2\text{-SAT},$$

we have 2-COLOR \in P.

• For k=3, we also have

$$3$$
-COLOR $\leq_m^P 3$ -SAT,

but this is just a particular case of Cook–Levin.

- k-COLOR \in NP for any k.
- 1-COLOR is trivial.
- Since

$$2\text{-COLOR} \leq_m^P 2\text{-SAT},$$

we have 2-COLOR \in P.

• For k=3, we also have

$$3$$
-COLOR $\leq_m^P 3$ -SAT,

but this is just a particular case of Cook–Levin.

 In order to prove NP-hardness of 3-COLOR, we need the opposite reduction.

Theorem

3-SAT \leq_m^P 3-COLOR, and therefore 3-COLOR is NP-complete.

Theorem

3-SAT \leq_m^P 3-COLOR, and therefore 3-COLOR is NP-complete.

 We need to construct a polynomially computable reducing function

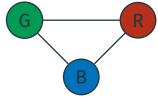
$$f \colon \varphi \mapsto G_{\varphi},$$

such that for any 3-CNF Boolean formula φ it is satisfiable if and only if the graph G_{φ} is colorable in 3 colors.

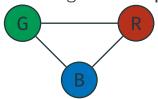
• Let $C = \{R, G, B\}$.

- Let $C = \{R, G, B\}$.
- As we encode satisfying assignments (of φ) as 3-colorings (of G_{φ}), red will intuitively mean false, green is true, and blue is the neutral third color.

- Let $C = \{R, G, B\}$.
- As we encode satisfying assignments (of φ) as 3-colorings (of G_{φ}), red will intuitively mean false, green is true, and blue is the neutral third color.
- We start with a triangle called palette:

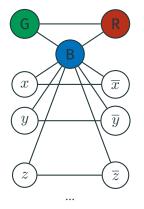


- Let $C = \{ R, G, B \}$.
- As we encode satisfying assignments (of φ) as 3-colorings (of G_{φ}), red will intuitively mean false, green is true, and blue is the neutral third color.
- We start with a triangle called **palette**:



 We may suppose that the palette is colored as shown (otherwise rename the colors).

Next, we introduce a pair of vertices $(x \text{ and } \bar{x})$ for each variable, and connect them as shown:



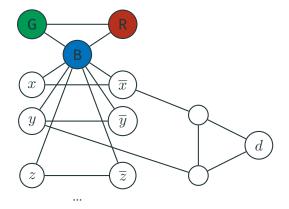
• For each variable x, the vertices x, \bar{x} , and B form a triangle.

- For each variable x, the vertices x, \bar{x} , and B form a triangle.
- Thus, either x is green and \bar{x} is red (x is true), or x is red and \bar{x} is green (x is false).

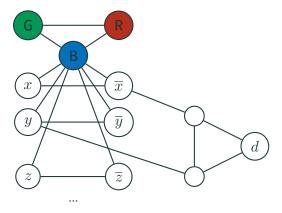
- For each variable x, the vertices x, \bar{x} , and B form a triangle.
- Thus, either x is green and \bar{x} is red (x is true), or x is red and \bar{x} is green (x is false).
- Each correct 3-coloring of the graph we have so far corresponds to a truth assignment.

- For each variable x, the vertices x, \bar{x} , and B form a triangle.
- Thus, either x is green and \bar{x} is red (x is true), or x is red and \bar{x} is green (x is false).
- Each correct 3-coloring of the graph we have so far corresponds to a truth assignment.
- Now we add **constraints** so that the assignment satisfies the 3-CNF φ .

We start with modelling a 2-clause, e.g., $\bar{x} \vee y$.

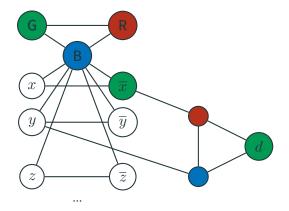


We start with modelling a 2-clause, e.g., $\bar{x} \lor y$.

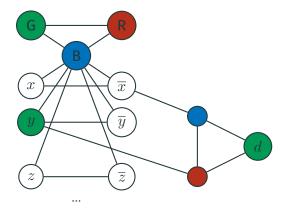


Claim: Vertex d can be colored in green if and only if \bar{x} is green and y is green (maybe both).

If \bar{x} or y is green, then we may color as follows:



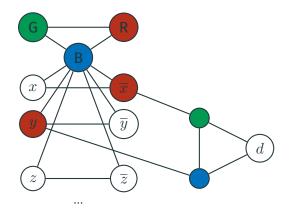
If \bar{x} or y is green, then we may color as follows:



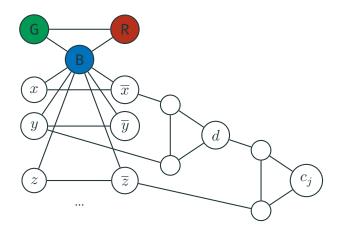
If both \bar{x} and y are red, then one of the two unnamed vertices should be green, which prevents d from being green.



If both \bar{x} and y are red, then one of the two unnamed vertices should be green, which prevents d from being green.



Now for a 3-clause, e.g., $C_j = \bar{x} \vee y \vee \bar{z}$, we copy the triangle once more:



• Here d corresponds to $\bar{x} \vee y$, and can be made green if and only if $\bar{x} \vee y$.

- Here d corresponds to $\bar{x} \vee y$, and can be made green if and only if $\bar{x} \vee y$.
- In the same way, c_j corresponds to $C_j = (\bar{x} \vee y) \vee \bar{z}.$

- Here d corresponds to $\bar{x} \vee y$, and can be made green if and only if $\bar{x} \vee y$.
- In the same way, c_j corresponds to $C_i = (\bar{x} \vee y) \vee \bar{z}$.
- We introduce such a construction with c_j on top for each 3-clause ${\cal C}_j$.

- Here d corresponds to $\bar{x} \vee y$, and can be made green if and only if $\bar{x} \vee y$.
- In the same way, c_j corresponds to $C_j = (\bar{x} \vee y) \vee \bar{z}$.
- We introduce such a construction with c_j on top for each 3-clause C_j .
 - For 2-clauses we use just one triangle, and for a 1-clause c_j is just x or \bar{x} .

- Here d corresponds to $\bar{x} \vee y$, and can be made green if and only if $\bar{x} \vee y$.
- In the same way, c_j corresponds to $C_j = (\bar{x} \vee y) \vee \bar{z}.$
- We introduce such a construction with c_j on top for each 3-clause C_j .
 - For 2-clauses we use just one triangle, and for a 1-clause c_i is just x or \bar{x} .
- Finally, we connect each c_j to both ${\it R}$ and ${\it B}$, in order to enforce c_j being green.

- Here d corresponds to $\bar{x} \vee y$, and can be made green if and only if $\bar{x} \vee y$.
- In the same way, c_j corresponds to $C_i = (\bar{x} \vee y) \vee \bar{z}$.
- We introduce such a construction with c_j on top for each 3-clause C_j .
 - For 2-clauses we use just one triangle, and for a 1-clause c_i is just x or \bar{x} .
- Finally, we connect each c_j to both R and B, in order to enforce c_j being green.
- . The resulting graph G_{φ} is 3-colorable if and only if φ is satisfiable.

Course Overview

 This course is a quick intro into the ideas of discrete mathematics and complexity theory, for the use in data science.

Course Overview

- This course is a quick intro into the ideas of discrete mathematics and complexity theory, for the use in data science.
- Discrete objects can be encoded as words over $\{0,1\}$ (or, more generally, over a finite alphabet Σ).

Course Overview

- This course is a quick intro into the ideas of discrete mathematics and complexity theory, for the use in data science.
- Discrete objects can be encoded as words over $\{0,1\}$ (or, more generally, over a finite alphabet Σ).
- An algorithm takes such a word as its input, and, in the simple case, returns another word as the output.

- This course is a quick intro into the ideas of discrete mathematics and complexity theory, for the use in data science.
- Discrete objects can be encoded as words over $\{0,1\}$ (or, more generally, over a finite alphabet Σ).
- An algorithm takes such a word as its input, and, in the simple case, returns another word as the output.
 - We have also considered more sophisticated behaviour, e.g., algorithms with delays.

· Thus, an algorithm computes a function

$$f \colon \{0,1\}^* \to \{0,1\}^*,$$

and such functions are called **computable**.

· Thus, an algorithm computes a function

$$f: \{0,1\}^* \to \{0,1\}^*,$$

and such functions are called **computable**.

 We also take care of the running time of the algorithm.

· Thus, an algorithm computes a function

$$f: \{0,1\}^* \to \{0,1\}^*,$$

and such functions are called **computable**.

- We also take care of the running time of the algorithm.
- A reasonable notion of "effectivity" is polynomial time computation, where computing f(x) takes $\leq p(|x|)$ steps (where p is a fixed polynomial).

 An algorithmic problem is a question whether a given function f is computable, and if it is, whether it is computable effectively.

- An algorithmic problem is a question whether a given function f is computable, and if it is, whether it is computable effectively.
- Special case: **decision problem**, where the output is just one bit $(f: \{0,1\}^* \to \{0,1\})$.

- An algorithmic problem is a question whether a given function f is computable, and if it is, whether it is computable effectively.
- Special case: **decision problem**, where the output is just one bit $(f: \{0,1\}^* \to \{0,1\})$.
- Another way is to express a decision problem as a subset (predicate) $A \subseteq \{0,1\}^*$, where $A = \{x \mid f(x) = 1\}$.

A decision problem belongs to class P, if f
is polynomially computable.

- A decision problem belongs to class P, if f
 is polynomially computable.
- The next higher complexity class is NP ("non-deterministically polynomial").

- A decision problem belongs to class P, if f
 is polynomially computable.
- The next higher complexity class is NP ("non-deterministically polynomial").
- Def. 1: the problem is in NP, if there is a non-deterministic polynomial-time algorithm, such that x ∈ A iff the algorithm yields 1 on at least one path ("angelic choice").

• Def. 2:

$$x \in A \iff \exists y (|y| \le p(|x|) \& R(x,y)),$$

where $R \in P$.

• Def. 2:

$$x \in A \iff \exists y \, (|y| \le p(|x|) \, \& \, R(x,y)),$$

where $R \in P$.

• In this definition, the statement $x \in A$ is certified by a witness y.

• Def. 2:

$$x \in A \iff \exists y \, (|y| \le p(|x|) \, \& \, R(x,y)),$$

where $R \in P$.

- In this definition, the statement $x \in A$ is certified by a witness y.
- Any problem from NP is algorithmically solvable (brute-force search for witness).

• Def. 2:

$$x \in A \iff \exists y (|y| \le p(|x|) \& R(x,y)),$$

where $R \in P$.

- In this definition, the statement $x \in A$ is certified by a witness y.
- Any problem from NP is algorithmically solvable (brute-force search for witness).
- The model case is satisfiability of Boolean formulae (SAT).

 A Boolean formula is built from a set of variables Var and constants 0 and 1 using Boolean operations: ∨, ∧, ¬, →.

- A Boolean formula is built from a set of variables Var and constants 0 and 1 using Boolean operations: ∨, ∧, ¬, →.
- An assignment (truth assignment) is a function $\alpha \colon \mathrm{Var} \to \{0,1\}$.

- A Boolean formula is built from a set of variables Var and constants 0 and 1 using Boolean operations: ∨, ∧, ¬, →.
- An assignment (truth assignment) is a function $\alpha \colon \mathrm{Var} \to \{0,1\}$.
- α is a **satisfying assignment** for formula φ , if the value of φ under α is 1 (true).

- A Boolean formula is built from a set of variables Var and constants 0 and 1 using Boolean operations: ∨, ∧, ¬, →.
- An assignment (truth assignment) is a function $\alpha \colon \mathrm{Var} \to \{0,1\}$.
- α is a **satisfying assignment** for formula φ , if the value of φ under α is 1 (true).
- Checking this condition is easy (polynomial); finding a satisfying assignment for a given φ could be hard.

• Unfortunately, we do not know that $P \neq NP$.

- Unfortunately, we do not know that $P \neq NP$.
 - It is possible that P = NP, then SAT is polynomial.

- Unfortunately, we do not know that $P \neq NP$.
 - It is possible that P = NP, then SAT is polynomial.
- We show "hardness" of SAT by a conditional argument, comparing decision problems by their complexity.

- Unfortunately, we do not know that $P \neq NP$.
 - It is possible that P = NP, then SAT is polynomial.
- We show "hardness" of SAT by a conditional argument, comparing decision problems by their complexity.
- For two problems $A,B\subseteq\{0,1\}^*$, we say

$$A \leq_m^P B \iff \forall x (x \in A \iff f(x) \in B)$$

for some polynomially computable function f (polynomial Carp reduction).

• On decision problems (in particular, on the NP class), \leq_m^P is a preorder.

- On decision problems (in particular, on the NP class), \leq_m^P is a preorder.
- The subclass P forms a cluster of \leq_m^P -equivalent problems on the bottom of NP.

- On decision problems (in particular, on the NP class), \leq_m^P is a preorder.
- The subclass P forms a cluster of \leq_m^P -equivalent problems on the bottom of NP.
 - There are also two degenerate problems, which are even simpler: $A=\emptyset$ and $A=\{0,1\}^*$ ("always no" or "always yes").

- On decision problems (in particular, on the NP class), \leq_m^P is a preorder.
- The subclass P forms a cluster of \leq^P_m -equivalent problems on the bottom of NP.
 - There are also two degenerate problems, which are even simpler: $A=\emptyset$ and $A=\{0,1\}^*$ ("always no" or "always yes").
- On top of NP, there are NP-complete problems—the hardest ones, w.r.t. \leq_m^P .

• A problem B is **NP-hard**, if for any problem $A \in \mathsf{NP}$ we have

 $A \leq_m^P B$.

• A problem B is **NP-hard**, if for any problem $A \in \mathbb{NP}$ we have

$$A \leq_m^P B$$
.

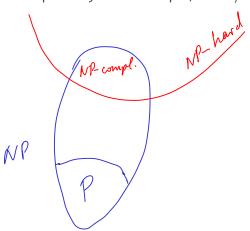
 A problem is NP-complete if it is NP-hard and belongs to NP.

• A problem B is **NP-hard**, if for any problem $A \in \mathbb{NP}$ we have

$$A \leq_m^P B$$
.

- A problem is NP-complete if it is NP-hard and belongs to NP.
 - For example, the validity problem for first-order formulae (with quantifiers) is NP-hard, but not NP-complete (being undecidable).

Complexity landscape, if $P \neq NP$:



 The existence of NP-complete ("maximal") problems in NP is shown by presenting a concrete example.

 The existence of NP-complete ("maximal") problems in NP is shown by presenting a concrete example.

Theorem (Cook-Levin)

SAT is NP-complete.

 The existence of NP-complete ("maximal") problems in NP is shown by presenting a concrete example.

Theorem (Cook-Levin)

SAT is NP-complete.

• In order to prove $A \leq_m^P$ SAT for an arbitrary $A \in \mathbb{NP}$, we encode the **protocol** of a non-deterministic Turing machine computing A as a Boolean vector, and write a Boolean formula $\varphi_{A,x}$ which states its correctness.

 The existence of NP-complete ("maximal") problems in NP is shown by presenting a concrete example.

Theorem (Cook-Levin)

SAT is NP-complete.

- In order to prove $A \leq_m^P$ SAT for an arbitrary $A \in \mathbb{NP}$, we encode the **protocol** of a non-deterministic Turing machine computing A as a Boolean vector, and write a Boolean formula $\varphi_{A,x}$ which states its correctness.
- $x \in A \iff \varphi_{A,x}$ is satisfiable.

 Potentially simpler subproblems of SAT are obtained by considering special classes of Boolean formulae.

- Potentially simpler subproblems of SAT are obtained by considering special classes of Boolean formulae.
- A CNF (conjunctive normal form) is a big conjunction of clauses of the form $\neg x \lor y \lor \neg z$.

- Potentially simpler subproblems of SAT are obtained by considering special classes of Boolean formulae.
- A CNF (conjunctive normal form) is a big conjunction of clauses of the form $\neg x \lor y \lor \neg z$.
- In a k-CNF, each clause includes $\leq k$ literals.

- Potentially simpler subproblems of SAT are obtained by considering special classes of Boolean formulae.
- A **CNF** (conjunctive normal form) is a big conjunction of **clauses** of the form $\neg x \lor y \lor \neg z$.
- In a k-CNF, each clause includes $\leq k$ literals.
- A **DNF** (disjunctive normal form) is a big disjunction of clauses of the form $\neg x \land y \land \neg z$.

 Any Boolean formula can be translated into an equivalent CNF or DNF, but this translation is (in general) not polynomial.

- Any Boolean formula can be translated into an equivalent CNF or DNF, but this translation is (in general) not polynomial.
- DNF-SAT is polynomially solvable: one just has to find at least one non-contradictory clause.

- Any Boolean formula can be translated into an equivalent CNF or DNF, but this translation is (in general) not polynomial.
- DNF-SAT is polynomially solvable: one just has to find at least one non-contradictory clause.
- For CNF-SAT, there is the resolution method, which is a bit more advanced than brute-force.

 In the resolution method, the CNF is saturated by applying the resolution rule:

$$\frac{A \vee p \quad \neg p \vee B}{A \vee B}$$

 In the resolution method, the CNF is saturated by applying the resolution rule:

$$\frac{A \vee p \quad \neg p \vee B}{A \vee B}$$

• Completeness theorem: the CNF is satisfiable iff it does not include the empty clause ("false") after saturation.

 In the resolution method, the CNF is saturated by applying the resolution rule:

$$\frac{A \vee p \quad \neg p \vee B}{A \vee B}$$

- Completeness theorem: the CNF is satisfiable iff it does not include the empty clause ("false") after saturation.
- Unfortunately, for $k \geq 3$ saturation can lead to exponential blowup.

Course Overview Theorem (Cook-Levin, Tseitin)

3-SAT is NP-complete.

Theorem (Cook-Levin, Tseitin)

3-SAT is NP-complete.

 In contrast, 2-SAT belongs to P, since applying resolutions to 2-clauses yields also 2-clauses, and there are a polynomial number of such.

Theorem (Cook-Levin, Tseitin)

3-SAT is NP-complete.

- In contrast, 2-SAT belongs to P, since applying resolutions to 2-clauses yields also 2-clauses, and there are a polynomial number of such.
- Also, resolution allows to solve the search problem for 2-SAT (yield at least one satisfying assignment), or yield all satisfying assignments with polynomial delay.

 The second half of the course is devoted to graphs.

- The second half of the course is devoted to graphs.
- Graphs and their generalisations (e.g., hypergraphs) are a generic representation of structured data in numerous applications: social networks, bioinformatics, GIS, network topology, etc.

- The second half of the course is devoted to graphs.
- Graphs and their generalisations (e.g., hypergraphs) are a generic representation of structured data in numerous applications: social networks, bioinformatics, GIS, network topology, etc.
- Graph theory provides many examples of problems from the NP class: "given a graph G, determine whether it includes some specific substructure".

 For some of these problems, we proved that they belong to P: finding an Euler path / cycle; 2-colorability (via reduction to 2-SAT).

- For some of these problems, we proved that they belong to P: finding an Euler path / cycle; 2-colorability (via reduction to 2-SAT).
- For others, we proved NP-completeness.
 These include 3-COLOR (and k-COLOR for k≥ 3); Hamitonian path / cycle search (both directed and undirected); subgraph isomorphism and its special cases (CLIQUE, INDSET, VERTEXCOVER).

- Finally, the graph isomorphism problem is neither known to belong to P, neither known to be NP-complete.
- For proving NP-completeness, we usually construct a reduction **from** 3-SAT, e.g.:

$$3$$
-SAT $\leq_m^P 3$ -COLOR,

while for proving polynomial solvability the **opposite** reduction can be used:

$$2$$
-COLOR $\leq_m^P 2$ -SAT.