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- Let us comment a bit more on
NP-completeness of the Hamiltonian path
problem.

- A Hamiltonian path is a path which
traverses each vertex of a given graph
exactly once.

- Such a path can be either a cycle or have
distinct start and end.
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The Hamiltonian Path Problem

- On the previous lecture, we have sketched
a proof of NP-completeness for the
problem of existence of a Hamiltonian path
in a directed graph, with fixed start s and
end t.

- This problem is called HAMPATH.

- In our construction s had no incoming
edges and t had no outgoing ones.

- Thus, (1) we do not have to fix s and ¢ in
advance; (2) by identifying s and ¢, we get
NP-completeness for HAMCYCLE.
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The Hamiltonian Path Problem

- The fact that HAMPATH belongs to NP is
established by definition: the path itself is
a hint, polynomial in size and polynomially
checkable.

- NP-hardness is proved by backwards
reduction:

3-SAT <P HAMPATH.



Backwards Reduction

Backwards reduction means that we need to
construct a polynomial algorithm which takes a
3-CNF ¢ and constructs a directed graph G,
with the following property:

G, has a Hamiltonian path from s to ¢
if and only if
© 1S satisfiable.
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Let ¢ include m clauses. For each variable x; of
@ we construct the following subgraph called
gadget:
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Gadget

In @ Hamiltonian path, this gadget can be traversed, from
s; to t;, only in the following two ways:

Green means true, red means false.
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Encoding the 3-CNF

- Let xq,...,x, bevariables used in our
3-CNF (Boolean formula) .

- Let €, ..., C,, be the clauses of ¢. (Each C;
is of the form like zy V =24 V 2-.)

- The 3-CNF ¢ is modelled in our graph G,
as follows:

variables = gadgets
clauses C; = extra vertices c;

satisfying assignment = Hamiltonian path
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Connecting Gadgets

- Gagdets are “stacked” one upon another:
Sit1 = -

- In a Hamiltonian path, on the path from
s =s, tot=t,, we have to traverse all
gadgets.

- The i-th gadget can be traversed either by
the green, or by the red path.

- This encodes the value of z, in our
assignment: », = 1 orz; = 0.
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Modelling Clauses

- For each clause C;, we have an additional
vertex ¢; (the same for all gadgets!).

- 1O includes x,, there are edges which
allow visiting ¢; on the green path of the
i-th gadget: u; — ¢; — v;.

» For =z, in C;, we can visit it on the red
path: v; — ¢; = u,.

- Thus, if (and only if) the assignment
satisfies ¢, the path traversing the gadgets
can be augmented by visiting all ¢;'s, thus
becoming a Hamiltonian path.
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Modelling Clauses

If C; includes —;:
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Modelling Satisfiability

- |If C; includes x;, then it can be visited,
while traversing the i-th gadget, only on
the green path (z, = 1).

- Dually, if C; includes —x,, then we can use
only the red path (x; = 0).

+ Since C; should be visited (exactly once),
we have to satisfy at least one of its literals.

- Finally, we connect the gadgets: s; = s,

S =ty, . S, =t, 1, t, =1

- There is a Hamiltonian path from s to ¢ in

G, iff ¢ is satisfiable.
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Undirected Graphs

- As already noticed, fixing s and ¢ in
HAMPATH is unnecessary, and identifying
them gives NP-hardness of HAMCYCLE.

- However, it is crucial for our construction
that the graph is directed.

- If we make edges undirected, each c;
would be traversable on both red and
green paths, thus, the graph will always
have a Hamiltonian path.
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Undirected Graphs

- Let us denoted the undirected versions of
HAMPATH and HAMCYCLE problems by
UHAMPATH and UHAMCYCLE, resp.

- We show their NP-hardness by reducing
from their undirected counterparts:

3-SAT <P HAMPATH <” UHAMPATH
3-SAT g,f; HAMCYCLE gﬂfj UHAMCYCLE
- The idea is to model direction by replacing

each vertex with a more complicated
subgraph.
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Undirected Graphs

- Each vertex v is replaced by three vertices:
and v, connected as follows:

- Each edge u — v of the original graph is
replaced by u,,, — vy,

- The Hamiltonian path can traverse v, 4
only between v, and v,,.

Vinr Umid»
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Undirected Graphs

- The construction transforms a directed
graph G to an undirected graph G’.

- Each Hamiltonian (directed) path in G
maps onto a Hamiltonian (undirected) path
inG’.

- Conversely, from a Hamiltonian path in G’
(from s,,,4 tO t,,.4) We can reconstruct a
directed Hamiltonian path in the original
graph G, taking only the ‘mid’-vertices.



Undirected Graphs

out ~ Vin — Umiqa Maps to u — v, while
~ Uy ~ Vout ~ Upiq d0€S NOL (it is u + v).

T Upig T U

Unid



Undirected Graphs

out = Um ~ Umiq Maps to u — v, while

mid — Uin ~ Vgt — Vypiq d0€S NOt (it is u < v).

- Thus, the function f: G — G’ provides the
necessary reductions:

T Upig T U

u
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Undirected Graphs

* Upig ~ Uyt ~ Uiy — Umiq Maps to u — v, while
Upig — Uiy — Vot — Uyiq d0€S NOL (it is u < v).

- Thus, the function f: G — G’ provides the
necessary reductions:

HAMPATH <2 UHAMPATH
HAMCYCLE <P UHAMCYCLE

- On the next lecture, we shall discuss
NP-completeness of yet another problem:
3-COLOR.



