More on Hamiltonian Paths

Stepan Kuznetsov

Discrete Math Bridging Course, HSE University

Hamiltonian Path

 Let us comment a bit more on NP-completeness of the Hamiltonian path problem.

Hamiltonian Path

- Let us comment a bit more on NP-completeness of the Hamiltonian path problem.
- A Hamiltonian path is a path which traverses each vertex of a given graph exactly once.

Hamiltonian Path

- Let us comment a bit more on NP-completeness of the Hamiltonian path problem.
- A Hamiltonian path is a path which traverses each vertex of a given graph exactly once.
- Such a path can be either a cycle or have distinct start and end.

 On the previous lecture, we have sketched a proof of NP-completeness for the problem of existence of a Hamiltonian path in a directed graph, with fixed start s and end t.

- On the previous lecture, we have sketched a proof of NP-completeness for the problem of existence of a Hamiltonian path in a directed graph, with fixed start s and end t.
- This problem is called HAMPATH.

- On the previous lecture, we have sketched a proof of NP-completeness for the problem of existence of a Hamiltonian path in a directed graph, with fixed start s and end t.
- This problem is called HAMPATH.
- In our construction s had no incoming edges and t had no outgoing ones.

- On the previous lecture, we have sketched a proof of NP-completeness for the problem of existence of a Hamiltonian path in a directed graph, with fixed start s and end t.
- This problem is called HAMPATH.
- In our construction s had no incoming edges and t had no outgoing ones.
- Thus, (1) we do not have to fix s and t in advance; (2) by identifying s and t, we get NP-completeness for HAMCYCLE.

 The fact that HAMPATH belongs to NP is established by definition: the path itself is a hint, polynomial in size and polynomially checkable.

- The fact that HAMPATH belongs to NP is established by definition: the path itself is a hint, polynomial in size and polynomially checkable.
- NP-hardness is proved by backwards reduction:

 $3\text{-SAT} \leq_m^P \text{HAMPATH}.$

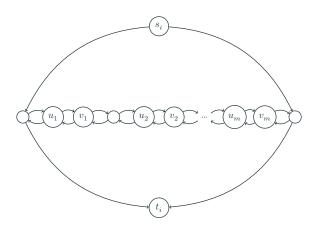
Backwards Reduction

Backwards reduction means that we need to construct a polynomial algorithm which takes a 3-CNF φ and constructs a directed graph G_{φ} with the following property:

 G_{φ} has a Hamiltonian path from s to t if and only if φ is satisfiable.

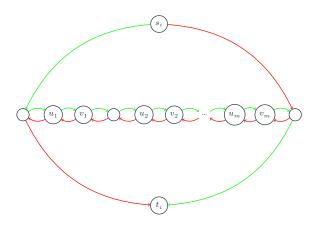
Gadget

Let φ include m clauses. For each $variable\ x_i$ of φ we construct the following subgraph called gadget:



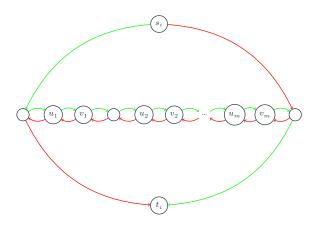
Gadget

In a Hamiltonian path, this gadget can be traversed, from s_i to t_i , only in the following two ways:



Gadget

In a Hamiltonian path, this gadget can be traversed, from s_i to t_i , only in the following two ways:



Green means true, red means false.

Encoding the 3-CNF

• Let x_1, \dots, x_n be **variables** used in our 3-CNF (Boolean formula) φ .

Encoding the 3-CNF

- Let x_1, \dots, x_n be variables used in our 3-CNF (Boolean formula) φ .
- Let C_1, \dots, C_m be the **clauses** of φ . (Each C_j is of the form like $x_2 \vee \neg x_6 \vee x_7$.)

Encoding the 3-CNF

- Let x_1, \dots, x_n be variables used in our 3-CNF (Boolean formula) φ .
- Let C_1, \dots, C_m be the **clauses** of φ . (Each C_j is of the form like $x_2 \vee \neg x_6 \vee x_7$.)
- The 3-CNF φ is modelled in our graph G_{φ} as follows:

variables
$$\Rightarrow$$
 gadgets
clauses $C_j \Rightarrow$ extra vertices c_j

satisfying assignment \Rightarrow Hamiltonian path

• Gagdets are "stacked" one upon another: $s_{i+1} = t_i$.

- Gagdets are "stacked" one upon another: $s_{i+1} = t_i$.
- In a Hamiltonian path, on the path from $s=s_1$ to $t=t_n$, we have to traverse all gadgets.

- Gagdets are "stacked" one upon another: $s_{i+1} = t_i$.
- In a Hamiltonian path, on the path from $s=s_1$ to $t=t_n$, we have to traverse all gadgets.
- The i-th gadget can be traversed either by the green, or by the red path.

- Gagdets are "stacked" one upon another: $s_{i+1} = t_i$.
- In a Hamiltonian path, on the path from $s=s_1$ to $t=t_n$, we have to traverse all gadgets.
- The i-th gadget can be traversed either by the green, or by the red path.
- This encodes the value of x_i in our assignment: $x_i = 1$ or $x_i = 0$.

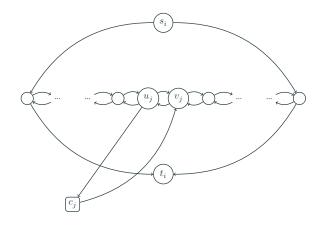
• For each clause C_j , we have an additional vertex c_j (the same for all gadgets!).

- For each clause C_j , we have an additional vertex c_j (the same for all gadgets!).
- If C_j includes x_i , there are edges which allow visiting c_j on the green path of the i-th gadget: $u_j \to c_j \to v_j$.

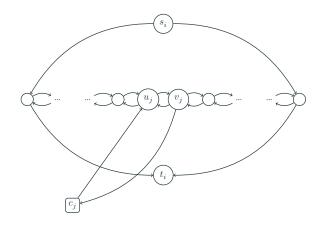
- For each clause C_j , we have an additional vertex c_j (the same for all gadgets!).
- If C_j includes x_i , there are edges which allow visiting c_j on the green path of the i-th gadget: $u_j \to c_j \to v_j$.
- For $\neg x_i$ in C_j , we can visit it on the red path: $v_j \to c_j \to u_j$.

- For each clause C_j , we have an additional vertex c_j (the same for all gadgets!).
- If C_j includes x_i , there are edges which allow visiting c_j on the green path of the i-th gadget: $u_j \to c_j \to v_j$.
- For $\neg x_i$ in C_j , we can visit it on the red path: $v_j \to c_j \to u_j$.
- Thus, if (and only if) the assignment satisfies φ , the path traversing the gadgets can be augmented by visiting all c_j 's, thus becoming a Hamiltonian path.

If C_j includes x_i :



If C_j includes $\neg x_i$:



• If C_j includes x_i , then it can be visited, while traversing the i-th gadget, only on the green path $(x_i = 1)$.

- If C_j includes x_i , then it can be visited, while traversing the i-th gadget, only on the green path $(x_i = 1)$.
- Dually, if C_j includes $\neg x_i$, then we can use only the red path $(x_i = 0)$.

- If C_j includes x_i , then it can be visited, while traversing the i-th gadget, only on the green path $(x_i = 1)$.
- Dually, if C_j includes $\neg x_i$, then we can use only the red path $(x_i = 0)$.
- Since C_j should be visited (exactly once), we have to satisfy at least one of its literals.

- If C_j includes x_i , then it can be visited, while traversing the i-th gadget, only on the green path $(x_i = 1)$.
- Dually, if C_j includes $\neg x_i$, then we can use only the red path $(x_i = 0)$.
- Since C_j should be visited (exactly once), we have to satisfy at least one of its literals.
- . Finally, we connect the gadgets: $s_1=s$, $s_2=t_1, ..., \, s_n=t_{n-1}, \, t_n=t.$

- If C_j includes x_i , then it can be visited, while traversing the i-th gadget, only on the green path $(x_i = 1)$.
- Dually, if C_j includes $\neg x_i$, then we can use only the red path $(x_i = 0)$.
- Since C_j should be visited (exactly once), we have to satisfy at least one of its literals.
- Finally, we connect the gadgets: $s_1=s$, $s_2=t_1, ..., s_n=t_{n-1}, t_n=t.$
- There is a Hamiltonian path from s to t in G_{φ} iff φ is satisfiable.

 As already noticed, fixing s and t in HAMPATH is unnecessary, and identifying them gives NP-hardness of HAMCYCLE.

- As already noticed, fixing s and t in HAMPATH is unnecessary, and identifying them gives NP-hardness of HAMCYCLE.
- However, it is crucial for our construction that the graph is directed.

- As already noticed, fixing s and t in HAMPATH is unnecessary, and identifying them gives NP-hardness of HAMCYCLE.
- However, it is crucial for our construction that the graph is directed.
- If we make edges undirected, each c_j would be traversable on **both** red and green paths, thus, the graph will **always** have a Hamiltonian path.

 Let us denoted the undirected versions of HAMPATH and HAMCYCLE problems by UHAMPATH and UHAMCYCLE, resp.

- Let us denoted the undirected versions of HAMPATH and HAMCYCLE problems by UHAMPATH and UHAMCYCLE, resp.
- We show their NP-hardness by reducing from their undirected counterparts:

3-SAT
$$\leq_m^P$$
 HAMPATH \leq_m^P UHAMPATH 3-SAT \leq_m^P HAMCYCLE \leq_m^P UHAMCYCLE

- Let us denoted the undirected versions of HAMPATH and HAMCYCLE problems by UHAMPATH and UHAMCYCLE, resp.
- We show their NP-hardness by reducing from their undirected counterparts:

3-SAT
$$\leq_m^P$$
 HAMPATH \leq_m^P UHAMPATH 3-SAT \leq_m^P HAMCYCLE \leq_m^P UHAMCYCLE

 The idea is to model direction by replacing each vertex with a more complicated subgraph.

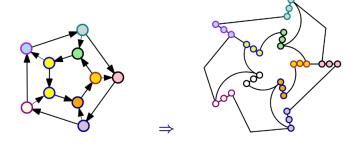
• Each vertex v is replaced by three vertices: $v_{\rm in},\,v_{\rm mid}$, and $v_{\rm out}$, connected as follows:

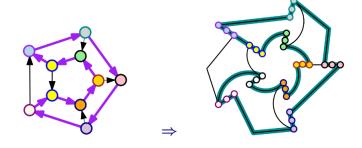
• Each vertex v is replaced by three vertices: $v_{\rm in},\,v_{\rm mid}$, and $v_{\rm out}$, connected as follows:

• Each edge $u \to v$ of the original graph is replaced by $u_{\rm out} - v_{\rm in}.$

• Each vertex v is replaced by three vertices: $v_{\rm in}$, $v_{\rm mid}$, and $v_{\rm out}$, connected as follows:

- Each edge $u \to v$ of the original graph is replaced by $u_{\rm out} v_{\rm in}.$
- The Hamiltonian path can traverse $v_{
 m mid}$ only between $v_{
 m in}$ and $v_{
 m out}.$





 The construction transforms a directed graph G to an undirected graph G'.

- The construction transforms a directed graph G to an undirected graph G'.
- Each Hamiltonian (directed) path in G
 maps onto a Hamiltonian (undirected) path
 in G'.

- The construction transforms a directed graph G to an undirected graph G'.
- Each Hamiltonian (directed) path in G
 maps onto a Hamiltonian (undirected) path
 in G'.
- Conversely, from a Hamiltonian path in G' (from $s_{\rm mid}$ to $t_{\rm mid}$) we can reconstruct a directed Hamiltonian path in the original graph G, taking only the 'mid'-vertices.

• u_{mid} – u_{out} – v_{in} – v_{mid} maps to $u \to v$, while u_{mid} – u_{in} – v_{out} – v_{mid} does not (it is $u \leftarrow v$).

- u_{mid} u_{out} v_{in} v_{mid} maps to $u \to v$, while u_{mid} u_{in} v_{out} v_{mid} does not (it is $u \leftarrow v$).
- Thus, the function $f: G \mapsto G'$ provides the necessary reductions:

 $\begin{aligned} & \mathsf{HAMPATH} \leq^P_m \mathsf{UHAMPATH} \\ & \mathsf{HAMCYCLE} \leq^P_m \mathsf{UHAMCYCLE} \end{aligned}$

- u_{mid} u_{out} v_{in} v_{mid} maps to $u \to v$, while u_{mid} u_{in} v_{out} v_{mid} does not (it is $u \leftarrow v$).
- Thus, the function $f: G \mapsto G'$ provides the necessary reductions:

$$\begin{aligned} & \mathsf{HAMPATH} \leq^P_m \mathsf{UHAMPATH} \\ & \mathsf{HAMCYCLE} \leq^P_m \mathsf{UHAMCYCLE} \end{aligned}$$

 On the next lecture, we shall discuss NP-completeness of yet another problem: 3-COLOR.