
More on Hamiltonian Paths

Stepan Kuznetsov

Discrete Math Bridging Course, HSE University



Hamiltonian Path

• Let us comment a bit more on
NP-completeness of the Hamiltonian path
problem.

• A Hamiltonian path is a path which
traverses each vertex of a given graph
exactly once.

• Such a path can be either a cycle or have
distinct start and end.



Hamiltonian Path

• Let us comment a bit more on
NP-completeness of the Hamiltonian path
problem.

• A Hamiltonian path is a path which
traverses each vertex of a given graph
exactly once.

• Such a path can be either a cycle or have
distinct start and end.



Hamiltonian Path

• Let us comment a bit more on
NP-completeness of the Hamiltonian path
problem.

• A Hamiltonian path is a path which
traverses each vertex of a given graph
exactly once.

• Such a path can be either a cycle or have
distinct start and end.



The Hamiltonian Path Problem
• On the previous lecture, we have sketched
a proof of NP-completeness for the
problem of existence of a Hamiltonian path
in a directed graph, with fixed start 𝑠 and
end 𝑡.

• This problem is called HAMPATH.
• In our construction 𝑠 had no incoming
edges and 𝑡 had no outgoing ones.

• Thus, (1) we do not have to fix 𝑠 and 𝑡 in
advance; (2) by identifying 𝑠 and 𝑡, we get
NP-completeness for HAMCYCLE.



The Hamiltonian Path Problem
• On the previous lecture, we have sketched
a proof of NP-completeness for the
problem of existence of a Hamiltonian path
in a directed graph, with fixed start 𝑠 and
end 𝑡.

• This problem is called HAMPATH.

• In our construction 𝑠 had no incoming
edges and 𝑡 had no outgoing ones.

• Thus, (1) we do not have to fix 𝑠 and 𝑡 in
advance; (2) by identifying 𝑠 and 𝑡, we get
NP-completeness for HAMCYCLE.



The Hamiltonian Path Problem
• On the previous lecture, we have sketched
a proof of NP-completeness for the
problem of existence of a Hamiltonian path
in a directed graph, with fixed start 𝑠 and
end 𝑡.

• This problem is called HAMPATH.
• In our construction 𝑠 had no incoming
edges and 𝑡 had no outgoing ones.

• Thus, (1) we do not have to fix 𝑠 and 𝑡 in
advance; (2) by identifying 𝑠 and 𝑡, we get
NP-completeness for HAMCYCLE.



The Hamiltonian Path Problem
• On the previous lecture, we have sketched
a proof of NP-completeness for the
problem of existence of a Hamiltonian path
in a directed graph, with fixed start 𝑠 and
end 𝑡.

• This problem is called HAMPATH.
• In our construction 𝑠 had no incoming
edges and 𝑡 had no outgoing ones.

• Thus, (1) we do not have to fix 𝑠 and 𝑡 in
advance; (2) by identifying 𝑠 and 𝑡, we get
NP-completeness for HAMCYCLE.



The Hamiltonian Path Problem

• The fact that HAMPATH belongs to NP is
established by definition: the path itself is
a hint, polynomial in size and polynomially
checkable.

• NP-hardness is proved by backwards
reduction:

3-SAT ≤𝑃
𝑚 HAMPATH.



The Hamiltonian Path Problem

• The fact that HAMPATH belongs to NP is
established by definition: the path itself is
a hint, polynomial in size and polynomially
checkable.

• NP-hardness is proved by backwards
reduction:

3-SAT ≤𝑃
𝑚 HAMPATH.



Backwards Reduction

Backwards reduction means that we need to
construct a polynomial algorithm which takes a
3-CNF 𝜑 and constructs a directed graph 𝐺𝜑
with the following property:

𝐺𝜑 has a Hamiltonian path from 𝑠 to 𝑡
if and only if

𝜑 is satisfiable.



Gadget
Let 𝜑 include 𝑚 clauses. For each variable 𝑥𝑖 of
𝜑 we construct the following subgraph called
gadget:

𝑡𝑖

𝑢1 𝑣1 𝑢2 𝑣2 … 𝑢𝑚 𝑣𝑚

𝑠𝑖



Gadget
In a Hamiltonian path, this gadget can be traversed, from
𝑠𝑖 to 𝑡𝑖, only in the following two ways:

𝑡𝑖

𝑢1 𝑣1 𝑢2 𝑣2 … 𝑢𝑚 𝑣𝑚

𝑠𝑖

Green means true, red means false.



Gadget
In a Hamiltonian path, this gadget can be traversed, from
𝑠𝑖 to 𝑡𝑖, only in the following two ways:

𝑡𝑖

𝑢1 𝑣1 𝑢2 𝑣2 … 𝑢𝑚 𝑣𝑚

𝑠𝑖

Green means true, red means false.



Encoding the 3-CNF

• Let 𝑥1, … , 𝑥𝑛 be variables used in our
3-CNF (Boolean formula) 𝜑.

• Let 𝐶1, … , 𝐶𝑚 be the clauses of 𝜑. (Each 𝐶𝑗
is of the form like 𝑥2 ∨ ¬𝑥6 ∨ 𝑥7.)

• The 3-CNF 𝜑 is modelled in our graph 𝐺𝜑
as follows:

variables ⇒ gadgets
clauses 𝐶𝑗 ⇒ extra vertices 𝑐𝑗

satisfying assignment ⇒ Hamiltonian path



Encoding the 3-CNF

• Let 𝑥1, … , 𝑥𝑛 be variables used in our
3-CNF (Boolean formula) 𝜑.

• Let 𝐶1, … , 𝐶𝑚 be the clauses of 𝜑. (Each 𝐶𝑗
is of the form like 𝑥2 ∨ ¬𝑥6 ∨ 𝑥7.)

• The 3-CNF 𝜑 is modelled in our graph 𝐺𝜑
as follows:

variables ⇒ gadgets
clauses 𝐶𝑗 ⇒ extra vertices 𝑐𝑗

satisfying assignment ⇒ Hamiltonian path



Encoding the 3-CNF

• Let 𝑥1, … , 𝑥𝑛 be variables used in our
3-CNF (Boolean formula) 𝜑.

• Let 𝐶1, … , 𝐶𝑚 be the clauses of 𝜑. (Each 𝐶𝑗
is of the form like 𝑥2 ∨ ¬𝑥6 ∨ 𝑥7.)

• The 3-CNF 𝜑 is modelled in our graph 𝐺𝜑
as follows:

variables ⇒ gadgets
clauses 𝐶𝑗 ⇒ extra vertices 𝑐𝑗

satisfying assignment ⇒ Hamiltonian path



Connecting Gadgets

• Gagdets are “stacked” one upon another:
𝑠𝑖+1 = 𝑡𝑖.

• In a Hamiltonian path, on the path from
𝑠 = 𝑠1 to 𝑡 = 𝑡𝑛, we have to traverse all
gadgets.

• The 𝑖-th gadget can be traversed either by
the green, or by the red path.

• This encodes the value of 𝑥𝑖 in our
assignment: 𝑥𝑖 = 1 or 𝑥𝑖 = 0.



Connecting Gadgets

• Gagdets are “stacked” one upon another:
𝑠𝑖+1 = 𝑡𝑖.

• In a Hamiltonian path, on the path from
𝑠 = 𝑠1 to 𝑡 = 𝑡𝑛, we have to traverse all
gadgets.

• The 𝑖-th gadget can be traversed either by
the green, or by the red path.

• This encodes the value of 𝑥𝑖 in our
assignment: 𝑥𝑖 = 1 or 𝑥𝑖 = 0.



Connecting Gadgets

• Gagdets are “stacked” one upon another:
𝑠𝑖+1 = 𝑡𝑖.

• In a Hamiltonian path, on the path from
𝑠 = 𝑠1 to 𝑡 = 𝑡𝑛, we have to traverse all
gadgets.

• The 𝑖-th gadget can be traversed either by
the green, or by the red path.

• This encodes the value of 𝑥𝑖 in our
assignment: 𝑥𝑖 = 1 or 𝑥𝑖 = 0.



Connecting Gadgets

• Gagdets are “stacked” one upon another:
𝑠𝑖+1 = 𝑡𝑖.

• In a Hamiltonian path, on the path from
𝑠 = 𝑠1 to 𝑡 = 𝑡𝑛, we have to traverse all
gadgets.

• The 𝑖-th gadget can be traversed either by
the green, or by the red path.

• This encodes the value of 𝑥𝑖 in our
assignment: 𝑥𝑖 = 1 or 𝑥𝑖 = 0.



Modelling Clauses
• For each clause 𝐶𝑗, we have an additional
vertex 𝑐𝑗 (the same for all gadgets!).

• If 𝐶𝑗 includes 𝑥𝑖, there are edges which
allow visiting 𝑐𝑗 on the green path of the
𝑖-th gadget: 𝑢𝑗 → 𝑐𝑗 → 𝑣𝑗.

• For ¬𝑥𝑖 in 𝐶𝑗, we can visit it on the red
path: 𝑣𝑗 → 𝑐𝑗 → 𝑢𝑗.

• Thus, if (and only if) the assignment
satisfies 𝜑, the path traversing the gadgets
can be augmented by visiting all 𝑐𝑗’s, thus
becoming a Hamiltonian path.



Modelling Clauses
• For each clause 𝐶𝑗, we have an additional
vertex 𝑐𝑗 (the same for all gadgets!).

• If 𝐶𝑗 includes 𝑥𝑖, there are edges which
allow visiting 𝑐𝑗 on the green path of the
𝑖-th gadget: 𝑢𝑗 → 𝑐𝑗 → 𝑣𝑗.

• For ¬𝑥𝑖 in 𝐶𝑗, we can visit it on the red
path: 𝑣𝑗 → 𝑐𝑗 → 𝑢𝑗.

• Thus, if (and only if) the assignment
satisfies 𝜑, the path traversing the gadgets
can be augmented by visiting all 𝑐𝑗’s, thus
becoming a Hamiltonian path.



Modelling Clauses
• For each clause 𝐶𝑗, we have an additional
vertex 𝑐𝑗 (the same for all gadgets!).

• If 𝐶𝑗 includes 𝑥𝑖, there are edges which
allow visiting 𝑐𝑗 on the green path of the
𝑖-th gadget: 𝑢𝑗 → 𝑐𝑗 → 𝑣𝑗.

• For ¬𝑥𝑖 in 𝐶𝑗, we can visit it on the red
path: 𝑣𝑗 → 𝑐𝑗 → 𝑢𝑗.

• Thus, if (and only if) the assignment
satisfies 𝜑, the path traversing the gadgets
can be augmented by visiting all 𝑐𝑗’s, thus
becoming a Hamiltonian path.



Modelling Clauses
• For each clause 𝐶𝑗, we have an additional
vertex 𝑐𝑗 (the same for all gadgets!).

• If 𝐶𝑗 includes 𝑥𝑖, there are edges which
allow visiting 𝑐𝑗 on the green path of the
𝑖-th gadget: 𝑢𝑗 → 𝑐𝑗 → 𝑣𝑗.

• For ¬𝑥𝑖 in 𝐶𝑗, we can visit it on the red
path: 𝑣𝑗 → 𝑐𝑗 → 𝑢𝑗.

• Thus, if (and only if) the assignment
satisfies 𝜑, the path traversing the gadgets
can be augmented by visiting all 𝑐𝑗’s, thus
becoming a Hamiltonian path.



Modelling Clauses

If 𝐶𝑗 includes 𝑥𝑖:

𝑡𝑖

… … 𝑢𝑗 𝑣𝑗 … …

𝑠𝑖

𝑐𝑗



Modelling Clauses

If 𝐶𝑗 includes ¬𝑥𝑖:

𝑡𝑖

… … 𝑢𝑗 𝑣𝑗 … …

𝑠𝑖

𝑐𝑗



Modelling Satisfiability
• If 𝐶𝑗 includes 𝑥𝑖, then it can be visited,
while traversing the 𝑖-th gadget, only on
the green path (𝑥𝑖 = 1).

• Dually, if 𝐶𝑗 includes ¬𝑥𝑖, then we can use
only the red path (𝑥𝑖 = 0).

• Since 𝐶𝑗 should be visited (exactly once),
we have to satisfy at least one of its literals.

• Finally, we connect the gadgets: 𝑠1 = 𝑠,
𝑠2 = 𝑡1, ..., 𝑠𝑛 = 𝑡𝑛−1, 𝑡𝑛 = 𝑡.

• There is a Hamiltonian path from 𝑠 to 𝑡 in
𝐺𝜑 iff 𝜑 is satisfiable.



Modelling Satisfiability
• If 𝐶𝑗 includes 𝑥𝑖, then it can be visited,
while traversing the 𝑖-th gadget, only on
the green path (𝑥𝑖 = 1).

• Dually, if 𝐶𝑗 includes ¬𝑥𝑖, then we can use
only the red path (𝑥𝑖 = 0).

• Since 𝐶𝑗 should be visited (exactly once),
we have to satisfy at least one of its literals.

• Finally, we connect the gadgets: 𝑠1 = 𝑠,
𝑠2 = 𝑡1, ..., 𝑠𝑛 = 𝑡𝑛−1, 𝑡𝑛 = 𝑡.

• There is a Hamiltonian path from 𝑠 to 𝑡 in
𝐺𝜑 iff 𝜑 is satisfiable.



Modelling Satisfiability
• If 𝐶𝑗 includes 𝑥𝑖, then it can be visited,
while traversing the 𝑖-th gadget, only on
the green path (𝑥𝑖 = 1).

• Dually, if 𝐶𝑗 includes ¬𝑥𝑖, then we can use
only the red path (𝑥𝑖 = 0).

• Since 𝐶𝑗 should be visited (exactly once),
we have to satisfy at least one of its literals.

• Finally, we connect the gadgets: 𝑠1 = 𝑠,
𝑠2 = 𝑡1, ..., 𝑠𝑛 = 𝑡𝑛−1, 𝑡𝑛 = 𝑡.

• There is a Hamiltonian path from 𝑠 to 𝑡 in
𝐺𝜑 iff 𝜑 is satisfiable.



Modelling Satisfiability
• If 𝐶𝑗 includes 𝑥𝑖, then it can be visited,
while traversing the 𝑖-th gadget, only on
the green path (𝑥𝑖 = 1).

• Dually, if 𝐶𝑗 includes ¬𝑥𝑖, then we can use
only the red path (𝑥𝑖 = 0).

• Since 𝐶𝑗 should be visited (exactly once),
we have to satisfy at least one of its literals.

• Finally, we connect the gadgets: 𝑠1 = 𝑠,
𝑠2 = 𝑡1, ..., 𝑠𝑛 = 𝑡𝑛−1, 𝑡𝑛 = 𝑡.

• There is a Hamiltonian path from 𝑠 to 𝑡 in
𝐺𝜑 iff 𝜑 is satisfiable.



Modelling Satisfiability
• If 𝐶𝑗 includes 𝑥𝑖, then it can be visited,
while traversing the 𝑖-th gadget, only on
the green path (𝑥𝑖 = 1).

• Dually, if 𝐶𝑗 includes ¬𝑥𝑖, then we can use
only the red path (𝑥𝑖 = 0).

• Since 𝐶𝑗 should be visited (exactly once),
we have to satisfy at least one of its literals.

• Finally, we connect the gadgets: 𝑠1 = 𝑠,
𝑠2 = 𝑡1, ..., 𝑠𝑛 = 𝑡𝑛−1, 𝑡𝑛 = 𝑡.

• There is a Hamiltonian path from 𝑠 to 𝑡 in
𝐺𝜑 iff 𝜑 is satisfiable.



Undirected Graphs

• As already noticed, fixing 𝑠 and 𝑡 in
HAMPATH is unnecessary, and identifying
them gives NP-hardness of HAMCYCLE.

• However, it is crucial for our construction
that the graph is directed.

• If we make edges undirected, each 𝑐𝑗
would be traversable on both red and
green paths, thus, the graph will always
have a Hamiltonian path.



Undirected Graphs

• As already noticed, fixing 𝑠 and 𝑡 in
HAMPATH is unnecessary, and identifying
them gives NP-hardness of HAMCYCLE.

• However, it is crucial for our construction
that the graph is directed.

• If we make edges undirected, each 𝑐𝑗
would be traversable on both red and
green paths, thus, the graph will always
have a Hamiltonian path.



Undirected Graphs

• As already noticed, fixing 𝑠 and 𝑡 in
HAMPATH is unnecessary, and identifying
them gives NP-hardness of HAMCYCLE.

• However, it is crucial for our construction
that the graph is directed.

• If we make edges undirected, each 𝑐𝑗
would be traversable on both red and
green paths, thus, the graph will always
have a Hamiltonian path.



Undirected Graphs
• Let us denoted the undirected versions of
HAMPATH and HAMCYCLE problems by
UHAMPATH and UHAMCYCLE, resp.

• We show their NP-hardness by reducing
from their undirected counterparts:

3-SAT ≤𝑃
𝑚 HAMPATH ≤𝑃

𝑚 UHAMPATH
3-SAT ≤𝑃

𝑚 HAMCYCLE ≤𝑃
𝑚 UHAMCYCLE

• The idea is to model direction by replacing
each vertex with a more complicated
subgraph.



Undirected Graphs
• Let us denoted the undirected versions of
HAMPATH and HAMCYCLE problems by
UHAMPATH and UHAMCYCLE, resp.

• We show their NP-hardness by reducing
from their undirected counterparts:

3-SAT ≤𝑃
𝑚 HAMPATH ≤𝑃

𝑚 UHAMPATH
3-SAT ≤𝑃

𝑚 HAMCYCLE ≤𝑃
𝑚 UHAMCYCLE

• The idea is to model direction by replacing
each vertex with a more complicated
subgraph.



Undirected Graphs
• Let us denoted the undirected versions of
HAMPATH and HAMCYCLE problems by
UHAMPATH and UHAMCYCLE, resp.

• We show their NP-hardness by reducing
from their undirected counterparts:

3-SAT ≤𝑃
𝑚 HAMPATH ≤𝑃

𝑚 UHAMPATH
3-SAT ≤𝑃

𝑚 HAMCYCLE ≤𝑃
𝑚 UHAMCYCLE

• The idea is to model direction by replacing
each vertex with a more complicated
subgraph.



Undirected Graphs

• Each vertex 𝑣 is replaced by three vertices:
𝑣in, 𝑣mid, and 𝑣out, connected as follows:

𝑣in 𝑣mid 𝑣out

• Each edge 𝑢 → 𝑣 of the original graph is
replaced by 𝑢out — 𝑣in.

• The Hamiltonian path can traverse 𝑣mid
only between 𝑣in and 𝑣out.



Undirected Graphs

• Each vertex 𝑣 is replaced by three vertices:
𝑣in, 𝑣mid, and 𝑣out, connected as follows:

𝑣in 𝑣mid 𝑣out

• Each edge 𝑢 → 𝑣 of the original graph is
replaced by 𝑢out — 𝑣in.

• The Hamiltonian path can traverse 𝑣mid
only between 𝑣in and 𝑣out.



Undirected Graphs

• Each vertex 𝑣 is replaced by three vertices:
𝑣in, 𝑣mid, and 𝑣out, connected as follows:

𝑣in 𝑣mid 𝑣out

• Each edge 𝑢 → 𝑣 of the original graph is
replaced by 𝑢out — 𝑣in.

• The Hamiltonian path can traverse 𝑣mid
only between 𝑣in and 𝑣out.



Undirected Graphs



Undirected Graphs



Undirected Graphs

• The construction transforms a directed
graph 𝐺 to an undirected graph 𝐺′.

• Each Hamiltonian (directed) path in 𝐺
maps onto a Hamiltonian (undirected) path
in 𝐺′.

• Conversely, from a Hamiltonian path in 𝐺′

(from 𝑠mid to 𝑡mid) we can reconstruct a
directed Hamiltonian path in the original
graph 𝐺, taking only the ‘mid’-vertices.



Undirected Graphs

• The construction transforms a directed
graph 𝐺 to an undirected graph 𝐺′.

• Each Hamiltonian (directed) path in 𝐺
maps onto a Hamiltonian (undirected) path
in 𝐺′.

• Conversely, from a Hamiltonian path in 𝐺′

(from 𝑠mid to 𝑡mid) we can reconstruct a
directed Hamiltonian path in the original
graph 𝐺, taking only the ‘mid’-vertices.



Undirected Graphs

• The construction transforms a directed
graph 𝐺 to an undirected graph 𝐺′.

• Each Hamiltonian (directed) path in 𝐺
maps onto a Hamiltonian (undirected) path
in 𝐺′.

• Conversely, from a Hamiltonian path in 𝐺′

(from 𝑠mid to 𝑡mid) we can reconstruct a
directed Hamiltonian path in the original
graph 𝐺, taking only the ‘mid’-vertices.



Undirected Graphs

• 𝑢mid – 𝑢out – 𝑣in – 𝑣mid maps to 𝑢 → 𝑣, while
𝑢mid – 𝑢in – 𝑣out – 𝑣mid does not (it is 𝑢 ← 𝑣).

• Thus, the function 𝑓∶ 𝐺 ↦ 𝐺′ provides the
necessary reductions:

HAMPATH ≤𝑃
𝑚 UHAMPATH

HAMCYCLE ≤𝑃
𝑚 UHAMCYCLE

• On the next lecture, we shall discuss
NP-completeness of yet another problem:
3-COLOR.



Undirected Graphs

• 𝑢mid – 𝑢out – 𝑣in – 𝑣mid maps to 𝑢 → 𝑣, while
𝑢mid – 𝑢in – 𝑣out – 𝑣mid does not (it is 𝑢 ← 𝑣).

• Thus, the function 𝑓∶ 𝐺 ↦ 𝐺′ provides the
necessary reductions:

HAMPATH ≤𝑃
𝑚 UHAMPATH

HAMCYCLE ≤𝑃
𝑚 UHAMCYCLE

• On the next lecture, we shall discuss
NP-completeness of yet another problem:
3-COLOR.



Undirected Graphs

• 𝑢mid – 𝑢out – 𝑣in – 𝑣mid maps to 𝑢 → 𝑣, while
𝑢mid – 𝑢in – 𝑣out – 𝑣mid does not (it is 𝑢 ← 𝑣).

• Thus, the function 𝑓∶ 𝐺 ↦ 𝐺′ provides the
necessary reductions:

HAMPATH ≤𝑃
𝑚 UHAMPATH

HAMCYCLE ≤𝑃
𝑚 UHAMCYCLE

• On the next lecture, we shall discuss
NP-completeness of yet another problem:
3-COLOR.


