
Boolean Logic
Resolution Method

Stepan Kuznetsov

Discrete Math for Algorithms, HSE University

Course Outline

• The aim of this course is to provide a
background of discrete mathematics and
computational complexity ideas useful for
data science.

• Given a very limited time for the course, we
have to choose a simple central topic to
use as a running example.

• And this topic is going to be Boolean logic.
• Let us first remind the basics of it.

Course Outline

• The aim of this course is to provide a
background of discrete mathematics and
computational complexity ideas useful for
data science.

• Given a very limited time for the course, we
have to choose a simple central topic to
use as a running example.

• And this topic is going to be Boolean logic.
• Let us first remind the basics of it.

Course Outline

• The aim of this course is to provide a
background of discrete mathematics and
computational complexity ideas useful for
data science.

• Given a very limited time for the course, we
have to choose a simple central topic to
use as a running example.

• And this topic is going to be Boolean logic.

• Let us first remind the basics of it.

Course Outline

• The aim of this course is to provide a
background of discrete mathematics and
computational complexity ideas useful for
data science.

• Given a very limited time for the course, we
have to choose a simple central topic to
use as a running example.

• And this topic is going to be Boolean logic.
• Let us first remind the basics of it.

Boolean Functions

• Boolean functions operate on the
two-element set {0, 1} (the simplest
non-trivial set).

• Formally, an 𝑛-ary Boolean function is a
function

𝑓∶ {0, 1} × … × {0, 1}⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛 times

→ {0, 1}.

• A Boolean function is a finite object: it can
be represented by a table (so-called truth
table) of 2𝑛 rows.

Boolean Functions

• Boolean functions operate on the
two-element set {0, 1} (the simplest
non-trivial set).

• Formally, an 𝑛-ary Boolean function is a
function

𝑓∶ {0, 1} × … × {0, 1}⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛 times

→ {0, 1}.

• A Boolean function is a finite object: it can
be represented by a table (so-called truth
table) of 2𝑛 rows.

Boolean Functions

• Boolean functions operate on the
two-element set {0, 1} (the simplest
non-trivial set).

• Formally, an 𝑛-ary Boolean function is a
function

𝑓∶ {0, 1} × … × {0, 1}⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛 times

→ {0, 1}.

• A Boolean function is a finite object: it can
be represented by a table (so-called truth
table) of 2𝑛 rows.

Boolean Functions

• The total number of 𝑛-ary Boolean
functions is 22𝑛 .

• For example, we have 4 unary Boolean
functions and 16 = 222 binary ones.

• The only interesting unary Boolean
function is negation, defined by the
following truth table:

𝑥 ¬𝑥
0 1
1 0

Boolean Functions

• The total number of 𝑛-ary Boolean
functions is 22𝑛 .

• For example, we have 4 unary Boolean
functions and 16 = 222 binary ones.

• The only interesting unary Boolean
function is negation, defined by the
following truth table:

𝑥 ¬𝑥
0 1
1 0

Boolean Functions

• The total number of 𝑛-ary Boolean
functions is 22𝑛 .

• For example, we have 4 unary Boolean
functions and 16 = 222 binary ones.

• The only interesting unary Boolean
function is negation, defined by the
following truth table:

𝑥 ¬𝑥
0 1
1 0

Boolean Functions

• As for binary functions, among 16 possible
there are several interesting ones: ∧
(conjunction, “and”), ∨ (disjunction, “or”),
→ (implication, “if ... then”).

• The truth tables for them are as follows:
𝑥 𝑦 𝑥 ∧ 𝑦 𝑥 ∨ 𝑦 𝑥 → 𝑦
0 0 0 0 1
0 1 0 1 1
1 0 0 1 0
1 1 1 1 1

Boolean Functions

• As for binary functions, among 16 possible
there are several interesting ones: ∧
(conjunction, “and”), ∨ (disjunction, “or”),
→ (implication, “if ... then”).

• The truth tables for them are as follows:
𝑥 𝑦 𝑥 ∧ 𝑦 𝑥 ∨ 𝑦 𝑥 → 𝑦
0 0 0 0 1
0 1 0 1 1
1 0 0 1 0
1 1 1 1 1

Boolean Functions
• ¬, ∧, ∨, and → form a complete system of
Boolean functions in the following sense.

Theorem
Any Boolean function can be represented as a
composition of ¬, ∧, ∨, →.

• For example, the majority function of three
elements, which gives 1 iff at least two of
its arguments are 1, has the following
representation:

MAJ3(𝑥, 𝑦, 𝑧) = (𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧) ∨ (𝑦 ∧ 𝑧).

Boolean Functions
• ¬, ∧, ∨, and → form a complete system of
Boolean functions in the following sense.

Theorem
Any Boolean function can be represented as a
composition of ¬, ∧, ∨, →.

• For example, the majority function of three
elements, which gives 1 iff at least two of
its arguments are 1, has the following
representation:

MAJ3(𝑥, 𝑦, 𝑧) = (𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧) ∨ (𝑦 ∧ 𝑧).

Boolean Functions
• ¬, ∧, ∨, and → form a complete system of
Boolean functions in the following sense.

Theorem
Any Boolean function can be represented as a
composition of ¬, ∧, ∨, →.

• For example, the majority function of three
elements, which gives 1 iff at least two of
its arguments are 1, has the following
representation:

MAJ3(𝑥, 𝑦, 𝑧) = (𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧) ∨ (𝑦 ∧ 𝑧).

Boolean Formulae

• Such representations are formalized by
Boolean formulae.

• The set Fm of Boolean formulae over a set
of variables Var is defined as the minimal
set obeying the following:

• Var ⊆ Fm
• ⊥, ⊤ ∈ Fm (these are constants for 0 and 1)
• if 𝐴, 𝐵 ∈ Fm, then

(𝐴 ∧ 𝐵), (𝐴 ∨ 𝐵), (𝐴 → 𝐵), ¬𝐴 ∈ Fm

Boolean Formulae

• Such representations are formalized by
Boolean formulae.

• The set Fm of Boolean formulae over a set
of variables Var is defined as the minimal
set obeying the following:

• Var ⊆ Fm
• ⊥, ⊤ ∈ Fm (these are constants for 0 and 1)
• if 𝐴, 𝐵 ∈ Fm, then

(𝐴 ∧ 𝐵), (𝐴 ∨ 𝐵), (𝐴 → 𝐵), ¬𝐴 ∈ Fm

Tautologies

• We shall consider Boolean formulae as
logical formulae, which represent logical
truth.

• A classic example. If it is raining, then there
are clouds in the sky. There are no clouds in
the sky. Thus, it is not raining.

• ((𝑟 → 𝑐) ∧ ¬𝑐) → ¬𝑟

• This formula is true for any values of 𝑟, 𝑐.
• Such formulae are called tautologies.

Tautologies

• We shall consider Boolean formulae as
logical formulae, which represent logical
truth.

• A classic example. If it is raining, then there
are clouds in the sky. There are no clouds in
the sky. Thus, it is not raining.

• ((𝑟 → 𝑐) ∧ ¬𝑐) → ¬𝑟

• This formula is true for any values of 𝑟, 𝑐.
• Such formulae are called tautologies.

Tautologies

• We shall consider Boolean formulae as
logical formulae, which represent logical
truth.

• A classic example. If it is raining, then there
are clouds in the sky. There are no clouds in
the sky. Thus, it is not raining.

• ((𝑟 → 𝑐) ∧ ¬𝑐) → ¬𝑟

• This formula is true for any values of 𝑟, 𝑐.
• Such formulae are called tautologies.

Tautologies

• We shall consider Boolean formulae as
logical formulae, which represent logical
truth.

• A classic example. If it is raining, then there
are clouds in the sky. There are no clouds in
the sky. Thus, it is not raining.

• ((𝑟 → 𝑐) ∧ ¬𝑐) → ¬𝑟

• This formula is true for any values of 𝑟, 𝑐.

• Such formulae are called tautologies.

Tautologies

• We shall consider Boolean formulae as
logical formulae, which represent logical
truth.

• A classic example. If it is raining, then there
are clouds in the sky. There are no clouds in
the sky. Thus, it is not raining.

• ((𝑟 → 𝑐) ∧ ¬𝑐) → ¬𝑟

• This formula is true for any values of 𝑟, 𝑐.
• Such formulae are called tautologies.

Tautologies

• Checking a formula for being a tautology is
an algorithmically decidable question.

• Indeed, the algorithm can just substitute
all possible values of 0 and 1 for variables
and compute the value of the formula.

• However, this requires exponential time
(checking 2𝑛 possible assignments).

• Is there a faster algorithm?..

Tautologies

• Checking a formula for being a tautology is
an algorithmically decidable question.

• Indeed, the algorithm can just substitute
all possible values of 0 and 1 for variables
and compute the value of the formula.

• However, this requires exponential time
(checking 2𝑛 possible assignments).

• Is there a faster algorithm?..

Tautologies

• Checking a formula for being a tautology is
an algorithmically decidable question.

• Indeed, the algorithm can just substitute
all possible values of 0 and 1 for variables
and compute the value of the formula.

• However, this requires exponential time
(checking 2𝑛 possible assignments).

• Is there a faster algorithm?..

Tautologies

• Checking a formula for being a tautology is
an algorithmically decidable question.

• Indeed, the algorithm can just substitute
all possible values of 0 and 1 for variables
and compute the value of the formula.

• However, this requires exponential time
(checking 2𝑛 possible assignments).

• Is there a faster algorithm?..

Satisfiability

• It will be more convenient for us to
consider a dual notion of satisfiable
formula.

• A Boolean formula is satisfiable, if it is true
for at least one assignment.

• Such an assignment is called a satisfying
assignment.

Satisfiability

• It will be more convenient for us to
consider a dual notion of satisfiable
formula.

• A Boolean formula is satisfiable, if it is true
for at least one assignment.

• Such an assignment is called a satisfying
assignment.

Satisfiability

• It will be more convenient for us to
consider a dual notion of satisfiable
formula.

• A Boolean formula is satisfiable, if it is true
for at least one assignment.

• Such an assignment is called a satisfying
assignment.

Satisfiability

• Satisfiability is indeed dual to being a
tautology:
𝐴 is a tautology ⟺ ¬𝐴 is not satisfiable.

• And actually satisfiability is a very general
model example of situations where we
seek for existence of an object (here:
satisfying assignment) with given
properties (here: the given formula 𝐴).

Satisfiability

• Satisfiability is indeed dual to being a
tautology:
𝐴 is a tautology ⟺ ¬𝐴 is not satisfiable.

• And actually satisfiability is a very general
model example of situations where we
seek for existence of an object (here:
satisfying assignment) with given
properties (here: the given formula 𝐴).

DNF and CNF
• A literal is either a variable (𝑥) or its
negation (¬𝑥, written as 𝑥).

• An elementary conjunction is a
conjunction of literals, e.g., 𝑥 ∧ 𝑦 ∧ 𝑧.

• A DNF (disjunctive normal form) is a
disjunction of elementary conjunctions.

• Dually, a CNF (conjunctive n.f.) is a
conjunction of elementary disjunctions,
e.g., (𝑥 ∨ 𝑦) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧).

• The elementary dis- / conjunctions are
called clauses.

DNF and CNF
• A literal is either a variable (𝑥) or its
negation (¬𝑥, written as 𝑥).

• An elementary conjunction is a
conjunction of literals, e.g., 𝑥 ∧ 𝑦 ∧ 𝑧.

• A DNF (disjunctive normal form) is a
disjunction of elementary conjunctions.

• Dually, a CNF (conjunctive n.f.) is a
conjunction of elementary disjunctions,
e.g., (𝑥 ∨ 𝑦) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧).

• The elementary dis- / conjunctions are
called clauses.

DNF and CNF
• A literal is either a variable (𝑥) or its
negation (¬𝑥, written as 𝑥).

• An elementary conjunction is a
conjunction of literals, e.g., 𝑥 ∧ 𝑦 ∧ 𝑧.

• A DNF (disjunctive normal form) is a
disjunction of elementary conjunctions.

• Dually, a CNF (conjunctive n.f.) is a
conjunction of elementary disjunctions,
e.g., (𝑥 ∨ 𝑦) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧).

• The elementary dis- / conjunctions are
called clauses.

DNF and CNF
• A literal is either a variable (𝑥) or its
negation (¬𝑥, written as 𝑥).

• An elementary conjunction is a
conjunction of literals, e.g., 𝑥 ∧ 𝑦 ∧ 𝑧.

• A DNF (disjunctive normal form) is a
disjunction of elementary conjunctions.

• Dually, a CNF (conjunctive n.f.) is a
conjunction of elementary disjunctions,
e.g., (𝑥 ∨ 𝑦) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧).

• The elementary dis- / conjunctions are
called clauses.

DNF and CNF
• A literal is either a variable (𝑥) or its
negation (¬𝑥, written as 𝑥).

• An elementary conjunction is a
conjunction of literals, e.g., 𝑥 ∧ 𝑦 ∧ 𝑧.

• A DNF (disjunctive normal form) is a
disjunction of elementary conjunctions.

• Dually, a CNF (conjunctive n.f.) is a
conjunction of elementary disjunctions,
e.g., (𝑥 ∨ 𝑦) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧).

• The elementary dis- / conjunctions are
called clauses.

Trivial Cases

• The degenerate DNF with zero clauses is
constant “false,” ⊥.

• Dually, the empty CNF is ⊤, “true.”
• Indeed, DNF clauses add possibilities,
while CNF ones impose constraints.

Trivial Cases

• The degenerate DNF with zero clauses is
constant “false,” ⊥.

• Dually, the empty CNF is ⊤, “true.”

• Indeed, DNF clauses add possibilities,
while CNF ones impose constraints.

Trivial Cases

• The degenerate DNF with zero clauses is
constant “false,” ⊥.

• Dually, the empty CNF is ⊤, “true.”
• Indeed, DNF clauses add possibilities,
while CNF ones impose constraints.

Full DNF
• Any Boolean function can be represented
by a full DNF, in which each clause contains
all variables.

• The full DNF can be obtained from the
truth table:

𝑥 𝑦 𝑧 𝐴
0 0 0 1

(𝑥 ∧ 𝑦 ∧ 𝑧) ⎫}}}}}}
⎬}}}}}}⎭

⋁

0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 1

(𝑥 ∧ 𝑦 ∧ 𝑧)

1 0 1 1

(𝑥 ∧ 𝑦 ∧ 𝑧)

1 1 0 0
1 1 1 1

(𝑥 ∧ 𝑦 ∧ 𝑧)

Full DNF
• Any Boolean function can be represented
by a full DNF, in which each clause contains
all variables.

• The full DNF can be obtained from the
truth table:

𝑥 𝑦 𝑧 𝐴
0 0 0 1

(𝑥 ∧ 𝑦 ∧ 𝑧) ⎫}}}}}}
⎬}}}}}}⎭

⋁

0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 1

(𝑥 ∧ 𝑦 ∧ 𝑧)

1 0 1 1

(𝑥 ∧ 𝑦 ∧ 𝑧)

1 1 0 0
1 1 1 1

(𝑥 ∧ 𝑦 ∧ 𝑧)

Full DNF
• Any Boolean function can be represented
by a full DNF, in which each clause contains
all variables.

• The full DNF can be obtained from the
truth table:

𝑥 𝑦 𝑧 𝐴
0 0 0 1

(𝑥 ∧ 𝑦 ∧ 𝑧) ⎫}}}}}}
⎬}}}}}}⎭

⋁

0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 1

(𝑥 ∧ 𝑦 ∧ 𝑧)

1 0 1 1

(𝑥 ∧ 𝑦 ∧ 𝑧)

1 1 0 0
1 1 1 1

(𝑥 ∧ 𝑦 ∧ 𝑧)

Full DNF
• Any Boolean function can be represented
by a full DNF, in which each clause contains
all variables.

• The full DNF can be obtained from the
truth table:

𝑥 𝑦 𝑧 𝐴
0 0 0 1 (𝑥 ∧ 𝑦 ∧ 𝑧)

⎫}}}}}}
⎬}}}}}}⎭

⋁

0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 1 (𝑥 ∧ 𝑦 ∧ 𝑧)
1 0 1 1 (𝑥 ∧ 𝑦 ∧ 𝑧)
1 1 0 0
1 1 1 1 (𝑥 ∧ 𝑦 ∧ 𝑧)

Full DNF
• Any Boolean function can be represented
by a full DNF, in which each clause contains
all variables.

• The full DNF can be obtained from the
truth table:

𝑥 𝑦 𝑧 𝐴
0 0 0 1 (𝑥 ∧ 𝑦 ∧ 𝑧) ⎫}}}}}}

⎬}}}}}}⎭

⋁

0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 1 (𝑥 ∧ 𝑦 ∧ 𝑧)
1 0 1 1 (𝑥 ∧ 𝑦 ∧ 𝑧)
1 1 0 0
1 1 1 1 (𝑥 ∧ 𝑦 ∧ 𝑧)

Full DNF
• The full DNF presented on the previous
slide,

(𝑥∧𝑦∧𝑧)∨(𝑥∧𝑦∧𝑧)∨(𝑥∧𝑦∧𝑧)∨(𝑥∧𝑦∧𝑧),

is not the optimal (shortest) one for the
given function.

• The following DNFs are equivalent to it and
are shorter:

(𝑥 ∧ 𝑦 ∧ 𝑧) ∨ (𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑦 ∧ 𝑧)

(𝑥 ∧ 𝑦 ∧ 𝑧) ∨ (𝑥 ∧ 𝑦 ∧ 𝑧) ∨ (𝑥 ∧ 𝑧)

Full DNF
• The full DNF presented on the previous
slide,

(𝑥∧𝑦∧𝑧)∨(𝑥∧𝑦∧𝑧)∨(𝑥∧𝑦∧𝑧)∨(𝑥∧𝑦∧𝑧),

is not the optimal (shortest) one for the
given function.

• The following DNFs are equivalent to it and
are shorter:

(𝑥 ∧ 𝑦 ∧ 𝑧) ∨ (𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑦 ∧ 𝑧)

(𝑥 ∧ 𝑦 ∧ 𝑧) ∨ (𝑥 ∧ 𝑦 ∧ 𝑧) ∨ (𝑥 ∧ 𝑧)

Completeness of ¬, ∧, ∨

• However, the notion of full DNF is sufficient
to prove the theorem that ¬, ∧, ∨ form a
complete system of Boolean functions.

• Moreover, by De Morgan laws,
¬(𝐴 ∧ 𝐵) ≡ (¬𝐴) ∨ (¬𝐵), thus
𝐴 ∧ 𝐵 ≡ ¬((¬𝐴) ∨ (¬𝐵)).

• This means that already ¬, ∨ and, dually,
¬, ∧ are complete systems.

• In particular,
𝐴 → 𝐵 ≡ ¬𝐴 ∨ 𝐵 ≡ ¬(𝐴 ∧ ¬𝐵).

Completeness of ¬, ∧, ∨

• However, the notion of full DNF is sufficient
to prove the theorem that ¬, ∧, ∨ form a
complete system of Boolean functions.

• Moreover, by De Morgan laws,
¬(𝐴 ∧ 𝐵) ≡ (¬𝐴) ∨ (¬𝐵), thus
𝐴 ∧ 𝐵 ≡ ¬((¬𝐴) ∨ (¬𝐵)).

• This means that already ¬, ∨ and, dually,
¬, ∧ are complete systems.

• In particular,
𝐴 → 𝐵 ≡ ¬𝐴 ∨ 𝐵 ≡ ¬(𝐴 ∧ ¬𝐵).

Completeness of ¬, ∧, ∨

• However, the notion of full DNF is sufficient
to prove the theorem that ¬, ∧, ∨ form a
complete system of Boolean functions.

• Moreover, by De Morgan laws,
¬(𝐴 ∧ 𝐵) ≡ (¬𝐴) ∨ (¬𝐵), thus
𝐴 ∧ 𝐵 ≡ ¬((¬𝐴) ∨ (¬𝐵)).

• This means that already ¬, ∨ and, dually,
¬, ∧ are complete systems.

• In particular,
𝐴 → 𝐵 ≡ ¬𝐴 ∨ 𝐵 ≡ ¬(𝐴 ∧ ¬𝐵).

Completeness of ¬, ∧, ∨

• However, the notion of full DNF is sufficient
to prove the theorem that ¬, ∧, ∨ form a
complete system of Boolean functions.

• Moreover, by De Morgan laws,
¬(𝐴 ∧ 𝐵) ≡ (¬𝐴) ∨ (¬𝐵), thus
𝐴 ∧ 𝐵 ≡ ¬((¬𝐴) ∨ (¬𝐵)).

• This means that already ¬, ∨ and, dually,
¬, ∧ are complete systems.

• In particular,
𝐴 → 𝐵 ≡ ¬𝐴 ∨ 𝐵 ≡ ¬(𝐴 ∧ ¬𝐵).

Full CNF

• A DNF can be translated into a CNF by
distributivity.

• One can also construct a full CNF from the
truth table by excluding 0-lines:

𝑥 𝑦 𝑧 𝐴
0 0 0 1

⎫}}}}}}
⎬}}}}}}⎭

⋀

0 0 1 0

(𝑥 ∨ 𝑦 ∨ 𝑧)

0 1 0 0

(𝑥 ∨ 𝑦 ∨ 𝑧)

0 1 1 0

(𝑥 ∨ 𝑦 ∨ 𝑧)

1 0 0 1
1 0 1 1
1 1 0 0

(𝑥 ∨ 𝑦 ∨ 𝑧)

1 1 1 1

Full CNF

• A DNF can be translated into a CNF by
distributivity.

• One can also construct a full CNF from the
truth table by excluding 0-lines:

𝑥 𝑦 𝑧 𝐴
0 0 0 1

⎫}}}}}}
⎬}}}}}}⎭

⋀

0 0 1 0

(𝑥 ∨ 𝑦 ∨ 𝑧)

0 1 0 0

(𝑥 ∨ 𝑦 ∨ 𝑧)

0 1 1 0

(𝑥 ∨ 𝑦 ∨ 𝑧)

1 0 0 1
1 0 1 1
1 1 0 0

(𝑥 ∨ 𝑦 ∨ 𝑧)

1 1 1 1

Full CNF

• A DNF can be translated into a CNF by
distributivity.

• One can also construct a full CNF from the
truth table by excluding 0-lines:

𝑥 𝑦 𝑧 𝐴
0 0 0 1

⎫}}}}}}
⎬}}}}}}⎭

⋀

0 0 1 0

(𝑥 ∨ 𝑦 ∨ 𝑧)

0 1 0 0

(𝑥 ∨ 𝑦 ∨ 𝑧)

0 1 1 0

(𝑥 ∨ 𝑦 ∨ 𝑧)

1 0 0 1
1 0 1 1
1 1 0 0

(𝑥 ∨ 𝑦 ∨ 𝑧)

1 1 1 1

Full CNF

• A DNF can be translated into a CNF by
distributivity.

• One can also construct a full CNF from the
truth table by excluding 0-lines:

𝑥 𝑦 𝑧 𝐴
0 0 0 1

⎫}}}}}}
⎬}}}}}}⎭

⋀

0 0 1 0 (𝑥 ∨ 𝑦 ∨ 𝑧)
0 1 0 0 (𝑥 ∨ 𝑦 ∨ 𝑧)
0 1 1 0 (𝑥 ∨ 𝑦 ∨ 𝑧)
1 0 0 1
1 0 1 1
1 1 0 0 (𝑥 ∨ 𝑦 ∨ 𝑧)
1 1 1 1

Full CNF

• A DNF can be translated into a CNF by
distributivity.

• One can also construct a full CNF from the
truth table by excluding 0-lines:

𝑥 𝑦 𝑧 𝐴
0 0 0 1 ⎫}}}}}}

⎬}}}}}}⎭

⋀

0 0 1 0 (𝑥 ∨ 𝑦 ∨ 𝑧)
0 1 0 0 (𝑥 ∨ 𝑦 ∨ 𝑧)
0 1 1 0 (𝑥 ∨ 𝑦 ∨ 𝑧)
1 0 0 1
1 0 1 1
1 1 0 0 (𝑥 ∨ 𝑦 ∨ 𝑧)
1 1 1 1

Satisfiability for DNF and CNF
• If a formula is given in DNF, checking its
satisfiability is trivial.

• The algorithm just checks elementary
conjunctions until it finds a consistent one,
i.e., one not including both 𝑥 and 𝑥.

• This clause is satisfiable, and so is the
whole DNF.

• For CNFs, satisfiability is a non-trivial
question.

• Translating from CNF to DNF does not help:
this could increase the size exponentially.

Satisfiability for DNF and CNF
• If a formula is given in DNF, checking its
satisfiability is trivial.

• The algorithm just checks elementary
conjunctions until it finds a consistent one,
i.e., one not including both 𝑥 and 𝑥.

• This clause is satisfiable, and so is the
whole DNF.

• For CNFs, satisfiability is a non-trivial
question.

• Translating from CNF to DNF does not help:
this could increase the size exponentially.

Satisfiability for DNF and CNF
• If a formula is given in DNF, checking its
satisfiability is trivial.

• The algorithm just checks elementary
conjunctions until it finds a consistent one,
i.e., one not including both 𝑥 and 𝑥.

• This clause is satisfiable, and so is the
whole DNF.

• For CNFs, satisfiability is a non-trivial
question.

• Translating from CNF to DNF does not help:
this could increase the size exponentially.

Satisfiability for DNF and CNF
• If a formula is given in DNF, checking its
satisfiability is trivial.

• The algorithm just checks elementary
conjunctions until it finds a consistent one,
i.e., one not including both 𝑥 and 𝑥.

• This clause is satisfiable, and so is the
whole DNF.

• For CNFs, satisfiability is a non-trivial
question.

• Translating from CNF to DNF does not help:
this could increase the size exponentially.

Satisfiability for DNF and CNF
• If a formula is given in DNF, checking its
satisfiability is trivial.

• The algorithm just checks elementary
conjunctions until it finds a consistent one,
i.e., one not including both 𝑥 and 𝑥.

• This clause is satisfiable, and so is the
whole DNF.

• For CNFs, satisfiability is a non-trivial
question.

• Translating from CNF to DNF does not help:
this could increase the size exponentially.

Resolution Method

• The fact that a formula is a tautology can
be established (in contrast with checking
all assignments) by proving it in the
classical propositional calculus.

• In this course, we consider a dual situation:
disproving satisfiability via resolution
method.

• Recall that, by duality, proving that 𝐴 is a
tautology is equivalent to disproving
satisfiability of ¬𝐴.

Resolution Method

• The fact that a formula is a tautology can
be established (in contrast with checking
all assignments) by proving it in the
classical propositional calculus.

• In this course, we consider a dual situation:
disproving satisfiability via resolution
method.

• Recall that, by duality, proving that 𝐴 is a
tautology is equivalent to disproving
satisfiability of ¬𝐴.

Resolution Method

• The fact that a formula is a tautology can
be established (in contrast with checking
all assignments) by proving it in the
classical propositional calculus.

• In this course, we consider a dual situation:
disproving satisfiability via resolution
method.

• Recall that, by duality, proving that 𝐴 is a
tautology is equivalent to disproving
satisfiability of ¬𝐴.

Resolution Method

• Resolution method is applied to formulae
in CNF, presented as a list of clauses.

• The one and only rule is resolution, which
generates new clauses from already
existing ones:

𝐴 ∨ 𝑝 𝐵 ∨ 𝑝
𝐴 ∨ 𝐵

• Contradictive clause: the empty one
(obtained by resolution from 𝑝 and 𝑝).

Resolution Method

• Resolution method is applied to formulae
in CNF, presented as a list of clauses.

• The one and only rule is resolution, which
generates new clauses from already
existing ones:

𝐴 ∨ 𝑝 𝐵 ∨ 𝑝
𝐴 ∨ 𝐵

• Contradictive clause: the empty one
(obtained by resolution from 𝑝 and 𝑝).

Resolution Method

• Resolution method is applied to formulae
in CNF, presented as a list of clauses.

• The one and only rule is resolution, which
generates new clauses from already
existing ones:

𝐴 ∨ 𝑝 𝐵 ∨ 𝑝
𝐴 ∨ 𝐵

• Contradictive clause: the empty one
(obtained by resolution from 𝑝 and 𝑝).

Resolution Method
Theorem (Soundness and Completeness)
A CNF is not satisfiable if and only if one can
obtain the empty clause by applying
resolutions, starting from the given CNF.

• The “if” part (soundness) is easy: if an
assignment satisfies 𝐴 ∨ 𝑝 and 𝐵 ∨ 𝑝, it also
satisfies 𝐴 ∨ 𝐵. The empty clause is not
satisfiable.

• The “only if” part (completeness) will be
proved next time.

Resolution Method
Theorem (Soundness and Completeness)
A CNF is not satisfiable if and only if one can
obtain the empty clause by applying
resolutions, starting from the given CNF.

• The “if” part (soundness) is easy: if an
assignment satisfies 𝐴 ∨ 𝑝 and 𝐵 ∨ 𝑝, it also
satisfies 𝐴 ∨ 𝐵. The empty clause is not
satisfiable.

• The “only if” part (completeness) will be
proved next time.

Resolution Method
Theorem (Soundness and Completeness)
A CNF is not satisfiable if and only if one can
obtain the empty clause by applying
resolutions, starting from the given CNF.

• The “if” part (soundness) is easy: if an
assignment satisfies 𝐴 ∨ 𝑝 and 𝐵 ∨ 𝑝, it also
satisfies 𝐴 ∨ 𝐵. The empty clause is not
satisfiable.

• The “only if” part (completeness) will be
proved next time.

Saturation

• The soundness and completeness theorem
validates the following algorithm for
checking satisfiability of CNFs.

• Given a CNF (as a set of clause), let us
saturate it by exhaustively applying
resolutions until they stop generating new
clauses.

• The CNF is satisfiable if and only if its
saturation does not include the empty
clause.

Saturation

• The soundness and completeness theorem
validates the following algorithm for
checking satisfiability of CNFs.

• Given a CNF (as a set of clause), let us
saturate it by exhaustively applying
resolutions until they stop generating new
clauses.

• The CNF is satisfiable if and only if its
saturation does not include the empty
clause.

Saturation

• The soundness and completeness theorem
validates the following algorithm for
checking satisfiability of CNFs.

• Given a CNF (as a set of clause), let us
saturate it by exhaustively applying
resolutions until they stop generating new
clauses.

• The CNF is satisfiable if and only if its
saturation does not include the empty
clause.

Translating into CNF

• The resolution method works only with
CNFs.

• When checking a formula 𝐴 for being a
tautology, it is convenient for 𝐴 to be in
DNF, since then ¬𝐴 is easily transformed
into CNF by De Morgan.

• For implications, keep in mind the
following equivalences:

𝐴 → 𝐵 ≡ ¬𝐴∨𝐵 ¬(𝐴 → 𝐵) ≡ 𝐴∧¬𝐵

Translating into CNF

• The resolution method works only with
CNFs.

• When checking a formula 𝐴 for being a
tautology, it is convenient for 𝐴 to be in
DNF, since then ¬𝐴 is easily transformed
into CNF by De Morgan.

• For implications, keep in mind the
following equivalences:

𝐴 → 𝐵 ≡ ¬𝐴∨𝐵 ¬(𝐴 → 𝐵) ≡ 𝐴∧¬𝐵

Translating into CNF

• The resolution method works only with
CNFs.

• When checking a formula 𝐴 for being a
tautology, it is convenient for 𝐴 to be in
DNF, since then ¬𝐴 is easily transformed
into CNF by De Morgan.

• For implications, keep in mind the
following equivalences:

𝐴 → 𝐵 ≡ ¬𝐴∨𝐵 ¬(𝐴 → 𝐵) ≡ 𝐴∧¬𝐵

Example

• Let us check whether the following formula
is a tautology:

𝐴 = (𝑝 → (𝑞 → 𝑟)) → ((𝑝 → 𝑞) → (𝑝 → 𝑟)

• Let us negate 𝐴 and check whether ¬𝐴 is
satisfiable

¬𝐴 = (𝑝 ∨ 𝑞 ∨ 𝑟) ∧ (𝑝 ∨ 𝑞) ∧ 𝑝 ∧ 𝑟

Example

• Let us check whether the following formula
is a tautology:

𝐴 = (𝑝 → (𝑞 → 𝑟)) → ((𝑝 → 𝑞) → (𝑝 → 𝑟)

• Let us negate 𝐴 and check whether ¬𝐴 is
satisfiable

¬𝐴 = (𝑝 ∨ 𝑞 ∨ 𝑟) ∧ (𝑝 ∨ 𝑞) ∧ 𝑝 ∧ 𝑟

Example

𝑝 ∨ 𝑞 ∨ 𝑟

𝑞 ∨ 𝑟

𝑝 ∨ 𝑞

𝑝 ∨ 𝑟

𝑝

𝑟

𝑟

⊥ ⇒ NOT SATISFIABLE

Example

𝑝 ∨ 𝑞 ∨ 𝑟 𝑞 ∨ 𝑟
𝑝 ∨ 𝑞

𝑝 ∨ 𝑟

𝑝

𝑟

𝑟

⊥ ⇒ NOT SATISFIABLE

Example

𝑝 ∨ 𝑞 ∨ 𝑟 𝑞 ∨ 𝑟
𝑝 ∨ 𝑞 𝑝 ∨ 𝑟
𝑝

𝑟

𝑟

⊥ ⇒ NOT SATISFIABLE

Example

𝑝 ∨ 𝑞 ∨ 𝑟 𝑞 ∨ 𝑟
𝑝 ∨ 𝑞 𝑝 ∨ 𝑟
𝑝 𝑟
𝑟

⊥ ⇒ NOT SATISFIABLE

Example

𝑝 ∨ 𝑞 ∨ 𝑟 𝑞 ∨ 𝑟
𝑝 ∨ 𝑞 𝑝 ∨ 𝑟
𝑝 𝑟
𝑟 ⊥

⇒ NOT SATISFIABLE

Example

𝑝 ∨ 𝑞 ∨ 𝑟 𝑞 ∨ 𝑟
𝑝 ∨ 𝑞 𝑝 ∨ 𝑟
𝑝 𝑟
𝑟 ⊥ ⇒ NOT SATISFIABLE

2-CNF
• Unfortunately, in the general case
saturation can be exponential.

• However, if each clause has no more than 2
literals (this is called a 2-CNF), resolution
method works really fast.

• Indeed, applying resolution to 2-bounded
clauses also yields a 2-bounded clause.

• And the total number of 2-bounded
clauses is ≤ 4𝑛2 + 2𝑛 + 1.

• Thus, checking satisfiability for 2-CNF can
be performed in polynomial time.

2-CNF
• Unfortunately, in the general case
saturation can be exponential.

• However, if each clause has no more than 2
literals (this is called a 2-CNF), resolution
method works really fast.

• Indeed, applying resolution to 2-bounded
clauses also yields a 2-bounded clause.

• And the total number of 2-bounded
clauses is ≤ 4𝑛2 + 2𝑛 + 1.

• Thus, checking satisfiability for 2-CNF can
be performed in polynomial time.

2-CNF
• Unfortunately, in the general case
saturation can be exponential.

• However, if each clause has no more than 2
literals (this is called a 2-CNF), resolution
method works really fast.

• Indeed, applying resolution to 2-bounded
clauses also yields a 2-bounded clause.

• And the total number of 2-bounded
clauses is ≤ 4𝑛2 + 2𝑛 + 1.

• Thus, checking satisfiability for 2-CNF can
be performed in polynomial time.

2-CNF
• Unfortunately, in the general case
saturation can be exponential.

• However, if each clause has no more than 2
literals (this is called a 2-CNF), resolution
method works really fast.

• Indeed, applying resolution to 2-bounded
clauses also yields a 2-bounded clause.

• And the total number of 2-bounded
clauses is ≤ 4𝑛2 + 2𝑛 + 1.

• Thus, checking satisfiability for 2-CNF can
be performed in polynomial time.

2-CNF
• Unfortunately, in the general case
saturation can be exponential.

• However, if each clause has no more than 2
literals (this is called a 2-CNF), resolution
method works really fast.

• Indeed, applying resolution to 2-bounded
clauses also yields a 2-bounded clause.

• And the total number of 2-bounded
clauses is ≤ 4𝑛2 + 2𝑛 + 1.

• Thus, checking satisfiability for 2-CNF can
be performed in polynomial time.

Polynomiality

• Traditionally, an algorithmic problem is
considered “practically solvable,” if there
exists a polynomially bounded algorithm
for it (that is, the number of steps, even in
the worst case, is ≤ 𝑝(|𝑥|), where 𝑝 is a
fixed polynomial and |𝑥| is the input
length).

• This is, of course, a gross approximation:
let, say, 𝑝(𝑛) = 𝑛100.

Polynomiality

• Traditionally, an algorithmic problem is
considered “practically solvable,” if there
exists a polynomially bounded algorithm
for it (that is, the number of steps, even in
the worst case, is ≤ 𝑝(|𝑥|), where 𝑝 is a
fixed polynomial and |𝑥| is the input
length).

• This is, of course, a gross approximation:
let, say, 𝑝(𝑛) = 𝑛100.

Polynomiality

• In real practice people usually wish better
complexity bounds, e.g., 𝑛 log 𝑛.

• However, polynomiality is robust: it is
independent from details of
implementation and even from the
computational model.

• A problem is polynomially solvable on a “real”
computer iff it is polynomially solvable on a
1-tape Turing machine.

• ... but with a different degree of 𝑝.

Polynomiality

• In real practice people usually wish better
complexity bounds, e.g., 𝑛 log 𝑛.

• However, polynomiality is robust: it is
independent from details of
implementation and even from the
computational model.

• A problem is polynomially solvable on a “real”
computer iff it is polynomially solvable on a
1-tape Turing machine.

• ... but with a different degree of 𝑝.

Polynomiality

• In real practice people usually wish better
complexity bounds, e.g., 𝑛 log 𝑛.

• However, polynomiality is robust: it is
independent from details of
implementation and even from the
computational model.

• A problem is polynomially solvable on a “real”
computer iff it is polynomially solvable on a
1-tape Turing machine.

• ... but with a different degree of 𝑝.

Polynomiality

• In real practice people usually wish better
complexity bounds, e.g., 𝑛 log 𝑛.

• However, polynomiality is robust: it is
independent from details of
implementation and even from the
computational model.

• A problem is polynomially solvable on a “real”
computer iff it is polynomially solvable on a
1-tape Turing machine.

• ... but with a different degree of 𝑝.

Polynomiality
• As we’ve seen, satisfiability for DNF and for
2-CNF is polynomially decidable.

• In short, these problems belong to class P.
• For satisfiability of CNFs, the situation is
different.

• By now, it is unknown whether it is in P.
• However, this is highly unlikely, because then a
large class of similar problems, called NP,
would be also in P.

• These problems include, e.g., subgraph
isomorphism, knapsack problem, subset sum
problem, ...

Polynomiality
• As we’ve seen, satisfiability for DNF and for
2-CNF is polynomially decidable.

• In short, these problems belong to class P.

• For satisfiability of CNFs, the situation is
different.

• By now, it is unknown whether it is in P.
• However, this is highly unlikely, because then a
large class of similar problems, called NP,
would be also in P.

• These problems include, e.g., subgraph
isomorphism, knapsack problem, subset sum
problem, ...

Polynomiality
• As we’ve seen, satisfiability for DNF and for
2-CNF is polynomially decidable.

• In short, these problems belong to class P.
• For satisfiability of CNFs, the situation is
different.

• By now, it is unknown whether it is in P.
• However, this is highly unlikely, because then a
large class of similar problems, called NP,
would be also in P.

• These problems include, e.g., subgraph
isomorphism, knapsack problem, subset sum
problem, ...

Polynomiality
• As we’ve seen, satisfiability for DNF and for
2-CNF is polynomially decidable.

• In short, these problems belong to class P.
• For satisfiability of CNFs, the situation is
different.

• By now, it is unknown whether it is in P.

• However, this is highly unlikely, because then a
large class of similar problems, called NP,
would be also in P.

• These problems include, e.g., subgraph
isomorphism, knapsack problem, subset sum
problem, ...

Polynomiality
• As we’ve seen, satisfiability for DNF and for
2-CNF is polynomially decidable.

• In short, these problems belong to class P.
• For satisfiability of CNFs, the situation is
different.

• By now, it is unknown whether it is in P.
• However, this is highly unlikely, because then a
large class of similar problems, called NP,
would be also in P.

• These problems include, e.g., subgraph
isomorphism, knapsack problem, subset sum
problem, ...

Polynomiality
• As we’ve seen, satisfiability for DNF and for
2-CNF is polynomially decidable.

• In short, these problems belong to class P.
• For satisfiability of CNFs, the situation is
different.

• By now, it is unknown whether it is in P.
• However, this is highly unlikely, because then a
large class of similar problems, called NP,
would be also in P.

• These problems include, e.g., subgraph
isomorphism, knapsack problem, subset sum
problem, ...

Home Assignment # 1

• Satisfiability for 2-CNF will be your task for
HW # 1.

• The easy version is to check satisfiability
(using resolution method).

• The full task is to check satisfiability and, if
the answer is “yes,” to return one of the
satisfying assignments.

Home Assignment # 1

• It is important to keep in mind that the
input is given in human-readable form, as
a string representing the formula.

• The program (in Python) should implement
two functions:
1. is_satisfiable, which takes a CNF and
answers True or False, depending on
whether it is satisfiable.

2. sat_assignment, which takes a CNF and
returns a satisfying assignment as an
associative array:
{ 'x': True, 'y': False, 'z': True }

Home Assignment # 1

• It is important to keep in mind that the
input is given in human-readable form, as
a string representing the formula.

• The program (in Python) should implement
two functions:
1. is_satisfiable, which takes a CNF and
answers True or False, depending on
whether it is satisfiable.

2. sat_assignment, which takes a CNF and
returns a satisfying assignment as an
associative array:
{ 'x': True, 'y': False, 'z': True }

Home Assignment # 1

• Conjunction, disjunction, negation, and
implication, are, resp., /\, \/, ~, ->.

• Literals: x or ~x, where x is an arbitrary
letter.

• Clauses: (𝐿1 \/ 𝐿2) or (𝐿1 -> 𝐿2), where
𝐿1 and 𝐿2 are literals.

• The CNF is a conjunction (/\) of clauses.

Home Assignment # 1

• Conjunction, disjunction, negation, and
implication, are, resp., /\, \/, ~, ->.

• Literals: x or ~x, where x is an arbitrary
letter.

• Clauses: (𝐿1 \/ 𝐿2) or (𝐿1 -> 𝐿2), where
𝐿1 and 𝐿2 are literals.

• The CNF is a conjunction (/\) of clauses.

Home Assignment # 1

• Conjunction, disjunction, negation, and
implication, are, resp., /\, \/, ~, ->.

• Literals: x or ~x, where x is an arbitrary
letter.

• Clauses: (𝐿1 \/ 𝐿2) or (𝐿1 -> 𝐿2), where
𝐿1 and 𝐿2 are literals.

• The CNF is a conjunction (/\) of clauses.

Home Assignment # 1

• Conjunction, disjunction, negation, and
implication, are, resp., /\, \/, ~, ->.

• Literals: x or ~x, where x is an arbitrary
letter.

• Clauses: (𝐿1 \/ 𝐿2) or (𝐿1 -> 𝐿2), where
𝐿1 and 𝐿2 are literals.

• The CNF is a conjunction (/\) of clauses.

HW # 1: Practice in Boolean Logic

• First, one needs to translate the input into
a machine-digestable form (this is called
parsing of the input).

• Grammar for CNFs:
CNF ::= Clause | CNF /\ Clause

Clause ::= (Lit \/ Lit) | (Lit -> Lit)

Lit ::= Var | ~Var

• We shall use specialized software, PLY
(Python Lex & Yacc), in order to automatize
the parsing process.

HW # 1: Practice in Boolean Logic

• First, one needs to translate the input into
a machine-digestable form (this is called
parsing of the input).

• Grammar for CNFs:
CNF ::= Clause | CNF /\ Clause

Clause ::= (Lit \/ Lit) | (Lit -> Lit)

Lit ::= Var | ~Var

• We shall use specialized software, PLY
(Python Lex & Yacc), in order to automatize
the parsing process.

HW # 1: Practice in Boolean Logic

• First, one needs to translate the input into
a machine-digestable form (this is called
parsing of the input).

• Grammar for CNFs:
CNF ::= Clause | CNF /\ Clause

Clause ::= (Lit \/ Lit) | (Lit -> Lit)

Lit ::= Var | ~Var

• We shall use specialized software, PLY
(Python Lex & Yacc), in order to automatize
the parsing process.

The Parsing Workflow

Lexical
Analyzer

input
(symbols)

stream of
tokens

Syntax Analyzer
(Parser)

recursive
structure

Lexical Analysis

• Input (stream of symbols):
int main(void)
{

printf("Hello, World!\n");
}

• Output (stream of tokens):

KW_INT IDENT(‘main’) ‘(’ KW_VOID ...

• Tokens are much more convenient to work
with (in the grammar).

Lexical Analysis

• Input (stream of symbols):
int main(void)
{

printf("Hello, World!\n");
}

• Output (stream of tokens):

KW_INT IDENT(‘main’) ‘(’ KW_VOID ...

• Tokens are much more convenient to work
with (in the grammar).

Lexical Analysis

• Input (stream of symbols):
int main(void)
{

printf("Hello, World!\n");
}

• Output (stream of tokens):
KW_INT

IDENT(‘main’) ‘(’ KW_VOID ...

• Tokens are much more convenient to work
with (in the grammar).

Lexical Analysis

• Input (stream of symbols):
int main(void)
{

printf("Hello, World!\n");
}

• Output (stream of tokens):
KW_INT IDENT(‘main’)

‘(’ KW_VOID ...

• Tokens are much more convenient to work
with (in the grammar).

Lexical Analysis

• Input (stream of symbols):
int main(void)
{

printf("Hello, World!\n");
}

• Output (stream of tokens):
KW_INT IDENT(‘main’) ‘(’

KW_VOID ...

• Tokens are much more convenient to work
with (in the grammar).

Lexical Analysis

• Input (stream of symbols):
int main(void)
{

printf("Hello, World!\n");
}

• Output (stream of tokens):
KW_INT IDENT(‘main’) ‘(’ KW_VOID

...

• Tokens are much more convenient to work
with (in the grammar).

Lexical Analysis

• Input (stream of symbols):
int main(void)
{

printf("Hello, World!\n");
}

• Output (stream of tokens):
KW_INT IDENT(‘main’) ‘(’ KW_VOID ...

• Tokens are much more convenient to work
with (in the grammar).

Lexical Analysis

• Input (stream of symbols):
int main(void)
{

printf("Hello, World!\n");
}

• Output (stream of tokens):
KW_INT IDENT(‘main’) ‘(’ KW_VOID ...

• Tokens are much more convenient to work
with (in the grammar).

Running Example: Simplifying Polynomials
• We consider the following task: translating
polynomials into normal form.

(2𝑥 + 2)(3𝑥2 − 1) + 2𝑥 = 6𝑥3 + 6𝑥 − 2

• Grammar:
Expr ::= Tm | -Tm | Expr + Tm | Expr - Tm
Tm ::= Mon | (Expr) | Tm (Expr)
Mon ::= Int_opt 'x' Pow_opt | INT
Int_opt ::= INT | 𝜀
Pow_opt ::= '^' INT | 𝜀

• Input example:
(2x+2)(3x^2-1)+2x

Running Example: Simplifying Polynomials
• We consider the following task: translating
polynomials into normal form.

(2𝑥 + 2)(3𝑥2 − 1) + 2𝑥 = 6𝑥3 + 6𝑥 − 2

• Grammar:
Expr ::= Tm | -Tm | Expr + Tm | Expr - Tm
Tm ::= Mon | (Expr) | Tm (Expr)
Mon ::= Int_opt 'x' Pow_opt | INT
Int_opt ::= INT | 𝜀
Pow_opt ::= '^' INT | 𝜀

• Input example:
(2x+2)(3x^2-1)+2x

Running Example: Simplifying Polynomials
• We consider the following task: translating
polynomials into normal form.

(2𝑥 + 2)(3𝑥2 − 1) + 2𝑥 = 6𝑥3 + 6𝑥 − 2

• Grammar:
Expr ::= Tm | -Tm | Expr + Tm | Expr - Tm
Tm ::= Mon | (Expr) | Tm (Expr)
Mon ::= Int_opt 'x' Pow_opt | INT
Int_opt ::= INT | 𝜀
Pow_opt ::= '^' INT | 𝜀

• Input example:
(2x+2)(3x^2-1)+2x

Running Example: Simplifying Polynomials
• We consider the following task: translating
polynomials into normal form.

(2𝑥 + 2)(3𝑥2 − 1) + 2𝑥 = 6𝑥3 + 6𝑥 − 2

• Grammar:
Expr ::= Tm | -Tm | Expr + Tm | Expr - Tm
Tm ::= Mon | (Expr) | Tm (Expr)
Mon ::= Int_opt 'x' Pow_opt | INT
Int_opt ::= INT | 𝜀
Pow_opt ::= '^' INT | 𝜀

• Input example:
(2x+2)(3x^2-1)+2x

Implementation: Lex & Yacc

Lexical
Analyzer
Lex

input
(symbols)

stream of
tokens

Syntax Analyzer
(Parser)
YACC

recursive
structure

• YACC = Yet Another Compiler Compiler
• In Python, we use PLY (Python Lex & Yacc).

Implementation: Lex & Yacc

Lexical
Analyzer
Lex

input
(symbols)

stream of
tokens

Syntax Analyzer
(Parser)
YACC

recursive
structure

• YACC = Yet Another Compiler Compiler

• In Python, we use PLY (Python Lex & Yacc).

Implementation: Lex & Yacc

Lexical
Analyzer
Lex

input
(symbols)

stream of
tokens

Syntax Analyzer
(Parser)
YACC

recursive
structure

• YACC = Yet Another Compiler Compiler

• In Python, we use PLY (Python Lex & Yacc).

Implementation: Lex & Yacc

Lexical
Analyzer
Lex

input
(symbols)

stream of
tokens

Syntax Analyzer
(Parser)
YACC

recursive
structure

• YACC = Yet Another Compiler Compiler
• In Python, we use PLY (Python Lex & Yacc).

PLY Code for Lexical Analysis
• Declare tokens and literals (one-symbol
tokens):
tokens = ['INT']
literals = ['+','-','(',')','^','x']

• For each token, declare a “t_”-function:
def t_INT(t):

r'\d+'
try:

t.value = int(t.value)
except ValueError:

print "Too large!", t.value
t.value = 0

return t

PLY Code for Lexical Analysis
• Declare tokens and literals (one-symbol
tokens):
tokens = ['INT']
literals = ['+','-','(',')','^','x']

• For each token, declare a “t_”-function:
def t_INT(t):

r'\d+'
try:

t.value = int(t.value)
except ValueError:

print "Too large!", t.value
t.value = 0

return t

PLY Code for Lexical Analysis

• r'\d+' is a regular expression for
sequences of decimal numbers.

• Another example: regular expression for
names (identifiers)
t_NAME = r'[a-zA-Z_][a-zA-Z0-9_]*'

• Finally, build the lexer:
import ply.lex as lex
lex.lex()

PLY Code for Lexical Analysis

• r'\d+' is a regular expression for
sequences of decimal numbers.

• Another example: regular expression for
names (identifiers)
t_NAME = r'[a-zA-Z_][a-zA-Z0-9_]*'

• Finally, build the lexer:
import ply.lex as lex
lex.lex()

PLY Code for Lexical Analysis

• r'\d+' is a regular expression for
sequences of decimal numbers.

• Another example: regular expression for
names (identifiers)
t_NAME = r'[a-zA-Z_][a-zA-Z0-9_]*'

• Finally, build the lexer:
import ply.lex as lex
lex.lex()

PLY Code for Parsing
• Each rule of the grammar is implemented
as a “p_”-function:
def polymult(p,q) :

r = []
for i in xrange(len(p)) :

for j in xrange(len(q)) :
safeadd(r,i+j,p[i]*q[j])

return r

…
def p_tm_mult(p):

"tm : tm '(' expr ')'"
p[0] = polymult(p[1],p[3])

PLY Code for Parsing

def p_tm_mult(p):
"tm : tm '(' expr ')'"
p[0] = polymult(p[1],p[3])

• A “p_”-function generates an object p[0],
using p[1], p[2], …, which are obtained
from the lexer or recursively from parsing.

PLY Code for Parsing

def p_tm_mult(p):
"tm : tm '(' expr ')'"
p[0] = polymult(p[1],p[3])

• A “p_”-function generates an object p[0],
using p[1], p[2], …, which are obtained
from the lexer or recursively from parsing.

PLY Code for Parsing

• Finally, build the parser:
import ply.yacc as yacc
yacc.yacc()

• The code of PLY examples is available on
the course’s webpage:
https://homepage.mi-ras.ru/~sk/lehre/dm_hse/

• For priorities of operations, see another
example available on the webpage:
calculator.

https://homepage.mi-ras.ru/~sk/lehre/dm_hse/

PLY Code for Parsing

• Finally, build the parser:
import ply.yacc as yacc
yacc.yacc()

• The code of PLY examples is available on
the course’s webpage:
https://homepage.mi-ras.ru/~sk/lehre/dm_hse/

• For priorities of operations, see another
example available on the webpage:
calculator.

https://homepage.mi-ras.ru/~sk/lehre/dm_hse/

PLY Code for Parsing

• Finally, build the parser:
import ply.yacc as yacc
yacc.yacc()

• The code of PLY examples is available on
the course’s webpage:
https://homepage.mi-ras.ru/~sk/lehre/dm_hse/

• For priorities of operations, see another
example available on the webpage:
calculator.

https://homepage.mi-ras.ru/~sk/lehre/dm_hse/

Good luck!

What Next?

• In the course, we shall develop the theory
of NP problems and NP-completeness, and
related topics.

• The running examples will be connected to
Boolean logic and graph theory.

• During the course, we’ll highlight possible
connections and applications in data
analysis.

What Next?

• In the course, we shall develop the theory
of NP problems and NP-completeness, and
related topics.

• The running examples will be connected to
Boolean logic and graph theory.

• During the course, we’ll highlight possible
connections and applications in data
analysis.

What Next?

• In the course, we shall develop the theory
of NP problems and NP-completeness, and
related topics.

• The running examples will be connected to
Boolean logic and graph theory.

• During the course, we’ll highlight possible
connections and applications in data
analysis.

