
Resolution Method;
Predicate Logic

Stepan Kuznetsov

Discrete Math Bridging Course, HSE University



Satisfiability

• We continue discussing satisfiability of
Boolean formula.

• A satisfying assignment is an assignment of
0’s and 1’s to variables, which makes the
formula true (value = 1).

• Satisfiability is a model example of a very
general situation of finding (more
precisely: checking for existence) an object
with given properties.



Satisfiability

• We continue discussing satisfiability of
Boolean formula.

• A satisfying assignment is an assignment of
0’s and 1’s to variables, which makes the
formula true (value = 1).

• Satisfiability is a model example of a very
general situation of finding (more
precisely: checking for existence) an object
with given properties.



Satisfiability

• We continue discussing satisfiability of
Boolean formula.

• A satisfying assignment is an assignment of
0’s and 1’s to variables, which makes the
formula true (value = 1).

• Satisfiability is a model example of a very
general situation of finding (more
precisely: checking for existence) an object
with given properties.



Resolution Method
• Recall that resolution method is a method
of determining whether a Boolean formula
given in CNF is satisfiable.

• A CNF is a conjunction of clauses, where
each clause is a disjunction of literals (e.g.,
𝑥 ∨ 𝑦 ∨ 𝑧).

• The algorithm saturates the CNF by adding
all clauses which can be generated by the
resolution rule:

𝐴 ∨ 𝑝 𝐵 ∨ 𝑝
𝐴 ∨ 𝐵



Resolution Method
• Recall that resolution method is a method
of determining whether a Boolean formula
given in CNF is satisfiable.

• A CNF is a conjunction of clauses, where
each clause is a disjunction of literals (e.g.,
𝑥 ∨ 𝑦 ∨ 𝑧).

• The algorithm saturates the CNF by adding
all clauses which can be generated by the
resolution rule:

𝐴 ∨ 𝑝 𝐵 ∨ 𝑝
𝐴 ∨ 𝐵



Resolution Method
• Recall that resolution method is a method
of determining whether a Boolean formula
given in CNF is satisfiable.

• A CNF is a conjunction of clauses, where
each clause is a disjunction of literals (e.g.,
𝑥 ∨ 𝑦 ∨ 𝑧).

• The algorithm saturates the CNF by adding
all clauses which can be generated by the
resolution rule:

𝐴 ∨ 𝑝 𝐵 ∨ 𝑝
𝐴 ∨ 𝐵



Resolution Method

• If the empty clause (⊥) got obtained, the
CNF is not satisfiable (because the
resolution rule keeps validity).

• Moreover, by completeness theorem this is
a criterion: if the empty clause is not
obtained, the CNF is satisfiable.



Resolution Method

• If the empty clause (⊥) got obtained, the
CNF is not satisfiable (because the
resolution rule keeps validity).

• Moreover, by completeness theorem this is
a criterion: if the empty clause is not
obtained, the CNF is satisfiable.



Resolution Method
• However, the non-derivability of the empty
clause does not give us the satisfying
assignment itself.

• In other words, the method solves the
decision problems (“yes”/“no”), but not the
search problem.

• If we are lucky enough, and the CNF has
only one satisfying assignment, then after
saturation we get isolated literals (like 𝑥 or
𝑦, for example), which dictate the desired
satisfying assignment (e.g., 𝑥 = 1 or 𝑦 = 0).



Resolution Method
• However, the non-derivability of the empty
clause does not give us the satisfying
assignment itself.

• In other words, the method solves the
decision problems (“yes”/“no”), but not the
search problem.

• If we are lucky enough, and the CNF has
only one satisfying assignment, then after
saturation we get isolated literals (like 𝑥 or
𝑦, for example), which dictate the desired
satisfying assignment (e.g., 𝑥 = 1 or 𝑦 = 0).



Resolution Method
• However, the non-derivability of the empty
clause does not give us the satisfying
assignment itself.

• In other words, the method solves the
decision problems (“yes”/“no”), but not the
search problem.

• If we are lucky enough, and the CNF has
only one satisfying assignment, then after
saturation we get isolated literals (like 𝑥 or
𝑦, for example), which dictate the desired
satisfying assignment (e.g., 𝑥 = 1 or 𝑦 = 0).



Resolution Method

• In other cases, we can use the following
consideration.

Proposition
If a saturated CNF 𝒮 includes neither ⊥ nor 𝑥
as an isolated literal, then 𝒮 ∧ 𝑥 is also
satisfiable. Same for swapping 𝑥 and 𝑥.

• In particular, if 𝒮 is satisfiable and includes
neither 𝑥 nor 𝑥, we can make an arbitrary
choice for the value of 𝑥.



Resolution Method

• In other cases, we can use the following
consideration.

Proposition
If a saturated CNF 𝒮 includes neither ⊥ nor 𝑥
as an isolated literal, then 𝒮 ∧ 𝑥 is also
satisfiable. Same for swapping 𝑥 and 𝑥.

• In particular, if 𝒮 is satisfiable and includes
neither 𝑥 nor 𝑥, we can make an arbitrary
choice for the value of 𝑥.



Resolution Method

• In other cases, we can use the following
consideration.

Proposition
If a saturated CNF 𝒮 includes neither ⊥ nor 𝑥
as an isolated literal, then 𝒮 ∧ 𝑥 is also
satisfiable. Same for swapping 𝑥 and 𝑥.

• In particular, if 𝒮 is satisfiable and includes
neither 𝑥 nor 𝑥, we can make an arbitrary
choice for the value of 𝑥.



Resolution Method

• However, after making this arbitrary choice,
we have to saturate 𝒮 ∧ 𝑥 (or 𝒮 ∧ 𝑥) again
before considering another variable.

• For example, the CNF (𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑧) is
saturated, but choosing 𝑥 = 0 (adding 𝑥)
allows new resolutions giving 𝑦 and 𝑧, and
thus dictating values for all other variables.



Resolution Method

• However, after making this arbitrary choice,
we have to saturate 𝒮 ∧ 𝑥 (or 𝒮 ∧ 𝑥) again
before considering another variable.

• For example, the CNF (𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑧) is
saturated, but choosing 𝑥 = 0 (adding 𝑥)
allows new resolutions giving 𝑦 and 𝑧, and
thus dictating values for all other variables.



Resolution Method
Proposition
If a saturated CNF 𝒮 includes neither ⊥ nor 𝑥
as an isolated literal, then 𝒮 ∧ 𝑥 is also
satisfiable. Same for swapping 𝑥 and 𝑥.

• The proof of the proposition is easy.
• Indeed, new resolutions applied when we
saturate 𝒮 ∧ 𝑥, should involve 𝑥.

• Therefore, if such a resolution generates ⊥,
there should have been 𝑥 in the original 𝒮.



Resolution Method
Proposition
If a saturated CNF 𝒮 includes neither ⊥ nor 𝑥
as an isolated literal, then 𝒮 ∧ 𝑥 is also
satisfiable. Same for swapping 𝑥 and 𝑥.

• The proof of the proposition is easy.

• Indeed, new resolutions applied when we
saturate 𝒮 ∧ 𝑥, should involve 𝑥.

• Therefore, if such a resolution generates ⊥,
there should have been 𝑥 in the original 𝒮.



Resolution Method
Proposition
If a saturated CNF 𝒮 includes neither ⊥ nor 𝑥
as an isolated literal, then 𝒮 ∧ 𝑥 is also
satisfiable. Same for swapping 𝑥 and 𝑥.

• The proof of the proposition is easy.
• Indeed, new resolutions applied when we
saturate 𝒮 ∧ 𝑥, should involve 𝑥.

• Therefore, if such a resolution generates ⊥,
there should have been 𝑥 in the original 𝒮.



Resolution Method
Proposition
If a saturated CNF 𝒮 includes neither ⊥ nor 𝑥
as an isolated literal, then 𝒮 ∧ 𝑥 is also
satisfiable. Same for swapping 𝑥 and 𝑥.

• The proof of the proposition is easy.
• Indeed, new resolutions applied when we
saturate 𝒮 ∧ 𝑥, should involve 𝑥.

• Therefore, if such a resolution generates ⊥,
there should have been 𝑥 in the original 𝒮.



Example

(𝑝 ∨ 𝑟 ∨ 𝑠), (𝑟 ∨ 𝑞), (𝑠 ∨ 𝑝 ∨ 𝑧), (𝑧 ∨ 𝑡), 𝑝

(𝑟 ∨ 𝑠), (𝑠 ∨ 𝑧), (𝑝 ∨ 𝑠 ∨ 𝑞), (𝑝 ∨ 𝑟 ∨ 𝑧), (𝑠 ∨ 𝑝 ∨ 𝑡),

(𝑟 ∨ 𝑧), (𝑝 ∨ 𝑞 ∨ 𝑧), (𝑠 ∨ 𝑞), (𝑠 ∨ 𝑡), (𝑟 ∨ 𝑝 ∨ 𝑡),
(𝑞 ∨ 𝑡), (𝑧 ∨ 𝑞), (𝑟 ∨ 𝑡)

𝑠

, 𝑧, 𝑡, (𝑝 ∨ 𝑧), (𝑝 ∨ 𝑡)

…



Example

(𝑝 ∨ 𝑟 ∨ 𝑠), (𝑟 ∨ 𝑞), (𝑠 ∨ 𝑝 ∨ 𝑧), (𝑧 ∨ 𝑡), 𝑝

(𝑟 ∨ 𝑠), (𝑠 ∨ 𝑧), (𝑝 ∨ 𝑠 ∨ 𝑞), (𝑝 ∨ 𝑟 ∨ 𝑧), (𝑠 ∨ 𝑝 ∨ 𝑡),

(𝑟 ∨ 𝑧), (𝑝 ∨ 𝑞 ∨ 𝑧), (𝑠 ∨ 𝑞), (𝑠 ∨ 𝑡), (𝑟 ∨ 𝑝 ∨ 𝑡),
(𝑞 ∨ 𝑡), (𝑧 ∨ 𝑞), (𝑟 ∨ 𝑡)

𝑠

, 𝑧, 𝑡, (𝑝 ∨ 𝑧), (𝑝 ∨ 𝑡)

…



Example

(𝑝 ∨ 𝑟 ∨ 𝑠), (𝑟 ∨ 𝑞), (𝑠 ∨ 𝑝 ∨ 𝑧), (𝑧 ∨ 𝑡), 𝑝

(𝑟 ∨ 𝑠), (𝑠 ∨ 𝑧), (𝑝 ∨ 𝑠 ∨ 𝑞), (𝑝 ∨ 𝑟 ∨ 𝑧), (𝑠 ∨ 𝑝 ∨ 𝑡),
(𝑟 ∨ 𝑧), (𝑝 ∨ 𝑞 ∨ 𝑧), (𝑠 ∨ 𝑞), (𝑠 ∨ 𝑡), (𝑟 ∨ 𝑝 ∨ 𝑡),

(𝑞 ∨ 𝑡), (𝑧 ∨ 𝑞), (𝑟 ∨ 𝑡)

𝑠

, 𝑧, 𝑡, (𝑝 ∨ 𝑧), (𝑝 ∨ 𝑡)

…



Example

(𝑝 ∨ 𝑟 ∨ 𝑠), (𝑟 ∨ 𝑞), (𝑠 ∨ 𝑝 ∨ 𝑧), (𝑧 ∨ 𝑡), 𝑝

(𝑟 ∨ 𝑠), (𝑠 ∨ 𝑧), (𝑝 ∨ 𝑠 ∨ 𝑞), (𝑝 ∨ 𝑟 ∨ 𝑧), (𝑠 ∨ 𝑝 ∨ 𝑡),
(𝑟 ∨ 𝑧), (𝑝 ∨ 𝑞 ∨ 𝑧), (𝑠 ∨ 𝑞), (𝑠 ∨ 𝑡), (𝑟 ∨ 𝑝 ∨ 𝑡),
(𝑞 ∨ 𝑡), (𝑧 ∨ 𝑞), (𝑟 ∨ 𝑡)

𝑠

, 𝑧, 𝑡, (𝑝 ∨ 𝑧), (𝑝 ∨ 𝑡)

…



Example

(𝑝 ∨ 𝑟 ∨ 𝑠), (𝑟 ∨ 𝑞), (𝑠 ∨ 𝑝 ∨ 𝑧), (𝑧 ∨ 𝑡), 𝑝

(𝑟 ∨ 𝑠), (𝑠 ∨ 𝑧), (𝑝 ∨ 𝑠 ∨ 𝑞), (𝑝 ∨ 𝑟 ∨ 𝑧), (𝑠 ∨ 𝑝 ∨ 𝑡),
(𝑟 ∨ 𝑧), (𝑝 ∨ 𝑞 ∨ 𝑧), (𝑠 ∨ 𝑞), (𝑠 ∨ 𝑡), (𝑟 ∨ 𝑝 ∨ 𝑡),
(𝑞 ∨ 𝑡), (𝑧 ∨ 𝑞), (𝑟 ∨ 𝑡)

𝑠

, 𝑧, 𝑡, (𝑝 ∨ 𝑧), (𝑝 ∨ 𝑡)

…



Example

(𝑝 ∨ 𝑟 ∨ 𝑠), (𝑟 ∨ 𝑞), (𝑠 ∨ 𝑝 ∨ 𝑧), (𝑧 ∨ 𝑡), 𝑝

(𝑟 ∨ 𝑠), (𝑠 ∨ 𝑧), (𝑝 ∨ 𝑠 ∨ 𝑞), (𝑝 ∨ 𝑟 ∨ 𝑧), (𝑠 ∨ 𝑝 ∨ 𝑡),
(𝑟 ∨ 𝑧), (𝑝 ∨ 𝑞 ∨ 𝑧), (𝑠 ∨ 𝑞), (𝑠 ∨ 𝑡), (𝑟 ∨ 𝑝 ∨ 𝑡),
(𝑞 ∨ 𝑡), (𝑧 ∨ 𝑞), (𝑟 ∨ 𝑡)

𝑠

, 𝑧, 𝑡, (𝑝 ∨ 𝑧), (𝑝 ∨ 𝑡)

…



Example

(𝑝 ∨ 𝑟 ∨ 𝑠), (𝑟 ∨ 𝑞), (𝑠 ∨ 𝑝 ∨ 𝑧), (𝑧 ∨ 𝑡), 𝑝

(𝑟 ∨ 𝑠), (𝑠 ∨ 𝑧), (𝑝 ∨ 𝑠 ∨ 𝑞), (𝑝 ∨ 𝑟 ∨ 𝑧), (𝑠 ∨ 𝑝 ∨ 𝑡),
(𝑟 ∨ 𝑧), (𝑝 ∨ 𝑞 ∨ 𝑧), (𝑠 ∨ 𝑞), (𝑠 ∨ 𝑡), (𝑟 ∨ 𝑝 ∨ 𝑡),
(𝑞 ∨ 𝑡), (𝑧 ∨ 𝑞), (𝑟 ∨ 𝑡)

𝑠, 𝑧, 𝑡, (𝑝 ∨ 𝑧), (𝑝 ∨ 𝑡)

…



Resolution for 2-CNF
• If clauses include at least 3 literals,
resolution can lead to growth:

𝑥 ∨ 𝑦 ∨ 𝑝 𝑧 ∨ 𝑤 ∨ 𝑝
𝑥 ∨ 𝑦 ∨ 𝑧 ∨ 𝑤

• This makes saturation a potentially
exponential procedure.

• However, for 2-CNF (each clause includes
no more than 2 literals) the clauses do not
grow:

𝑥 ∨ 𝑝 𝑧 ∨ 𝑝
𝑥 ∨ 𝑧



Resolution for 2-CNF
• If clauses include at least 3 literals,
resolution can lead to growth:

𝑥 ∨ 𝑦 ∨ 𝑝 𝑧 ∨ 𝑤 ∨ 𝑝
𝑥 ∨ 𝑦 ∨ 𝑧 ∨ 𝑤

• This makes saturation a potentially
exponential procedure.

• However, for 2-CNF (each clause includes
no more than 2 literals) the clauses do not
grow:

𝑥 ∨ 𝑝 𝑧 ∨ 𝑝
𝑥 ∨ 𝑧



Resolution for 2-CNF
• If clauses include at least 3 literals,
resolution can lead to growth:

𝑥 ∨ 𝑦 ∨ 𝑝 𝑧 ∨ 𝑤 ∨ 𝑝
𝑥 ∨ 𝑦 ∨ 𝑧 ∨ 𝑤

• This makes saturation a potentially
exponential procedure.

• However, for 2-CNF (each clause includes
no more than 2 literals) the clauses do not
grow:

𝑥 ∨ 𝑝 𝑧 ∨ 𝑝
𝑥 ∨ 𝑧



Resolution for 2-CNF
• Thus, the total number of possible clauses
does not exceed 4𝑛2 + 2𝑛 + 1, where 𝑛 is
the number of variables.

• This makes the saturation process
polynomial.

• This can be organized as follows: take each
clause from the list, starting from the
second one, and try to resolve it against
eariler ones. Does it give a new clause?

• New clauses are added to the bottom of
the list.



Resolution for 2-CNF
• Thus, the total number of possible clauses
does not exceed 4𝑛2 + 2𝑛 + 1, where 𝑛 is
the number of variables.

• This makes the saturation process
polynomial.

• This can be organized as follows: take each
clause from the list, starting from the
second one, and try to resolve it against
eariler ones. Does it give a new clause?

• New clauses are added to the bottom of
the list.



Resolution for 2-CNF
• Thus, the total number of possible clauses
does not exceed 4𝑛2 + 2𝑛 + 1, where 𝑛 is
the number of variables.

• This makes the saturation process
polynomial.

• This can be organized as follows: take each
clause from the list, starting from the
second one, and try to resolve it against
eariler ones. Does it give a new clause?

• New clauses are added to the bottom of
the list.



Resolution for 2-CNF
• Thus, the total number of possible clauses
does not exceed 4𝑛2 + 2𝑛 + 1, where 𝑛 is
the number of variables.

• This makes the saturation process
polynomial.

• This can be organized as follows: take each
clause from the list, starting from the
second one, and try to resolve it against
eariler ones. Does it give a new clause?

• New clauses are added to the bottom of
the list.



Resolution: Completeness Proof
Theorem
If one cannot obtain the empty clause by
applying resolutions, starting from the given
CNF, then the CNF is satisfiable.

• We prove this theorem using induction on
the number of variables.

• That is, we establish it for zero variables
(trivial) and then validate the step from 𝑛
to 𝑛 + 1 variables.



Resolution: Completeness Proof
Theorem
If one cannot obtain the empty clause by
applying resolutions, starting from the given
CNF, then the CNF is satisfiable.

• We prove this theorem using induction on
the number of variables.

• That is, we establish it for zero variables
(trivial) and then validate the step from 𝑛
to 𝑛 + 1 variables.



Resolution: Completeness Proof
Theorem
If one cannot obtain the empty clause by
applying resolutions, starting from the given
CNF, then the CNF is satisfiable.

• We prove this theorem using induction on
the number of variables.

• That is, we establish it for zero variables
(trivial) and then validate the step from 𝑛
to 𝑛 + 1 variables.



Resolution: Completeness Proof

• Zero variables: the only possible clause is
⊥, therefore, our CNF is empty.

• From 𝑛 to 𝑛 + 1. Let the extra variable be
𝑝𝑛+1 = 𝑞 and let 𝒮 denote the saturation of
our CNF.

• Take all clauses which do not include 𝑞,
and remove 𝑞 out of them. This gives 𝒮+.

• Dually, take clauses without 𝑞 and remove
𝑞. This gives 𝒮−.



Resolution: Completeness Proof

• Zero variables: the only possible clause is
⊥, therefore, our CNF is empty.

• From 𝑛 to 𝑛 + 1. Let the extra variable be
𝑝𝑛+1 = 𝑞 and let 𝒮 denote the saturation of
our CNF.

• Take all clauses which do not include 𝑞,
and remove 𝑞 out of them. This gives 𝒮+.

• Dually, take clauses without 𝑞 and remove
𝑞. This gives 𝒮−.



Resolution: Completeness Proof

• Zero variables: the only possible clause is
⊥, therefore, our CNF is empty.

• From 𝑛 to 𝑛 + 1. Let the extra variable be
𝑝𝑛+1 = 𝑞 and let 𝒮 denote the saturation of
our CNF.

• Take all clauses which do not include 𝑞,
and remove 𝑞 out of them. This gives 𝒮+.

• Dually, take clauses without 𝑞 and remove
𝑞. This gives 𝒮−.



Resolution: Completeness Proof

• Zero variables: the only possible clause is
⊥, therefore, our CNF is empty.

• From 𝑛 to 𝑛 + 1. Let the extra variable be
𝑝𝑛+1 = 𝑞 and let 𝒮 denote the saturation of
our CNF.

• Take all clauses which do not include 𝑞,
and remove 𝑞 out of them. This gives 𝒮+.

• Dually, take clauses without 𝑞 and remove
𝑞. This gives 𝒮−.



Resolution: Completeness Proof

• Both 𝒮+ and 𝒮− are saturated.

• Indeed, any new resolution in 𝒮+ or in 𝒮−

would induce a resolution in 𝒮.
• Let us show that at least one of 𝒮+ and 𝒮−

is satisfiable.

• Suppose, both 𝒮+ and 𝒮− include ⊥.
• Then 𝒮 includes both 𝑞 and 𝑞, and therefore

⊥. Contradiction.
• Since 𝒮+ and 𝒮− use only 𝑝1, … , 𝑝𝑛, we
already know our theorem for them.

• The one which does not include ⊥ is
satisfiable.



Resolution: Completeness Proof

• Both 𝒮+ and 𝒮− are saturated.
• Indeed, any new resolution in 𝒮+ or in 𝒮−

would induce a resolution in 𝒮.

• Let us show that at least one of 𝒮+ and 𝒮−

is satisfiable.

• Suppose, both 𝒮+ and 𝒮− include ⊥.
• Then 𝒮 includes both 𝑞 and 𝑞, and therefore

⊥. Contradiction.
• Since 𝒮+ and 𝒮− use only 𝑝1, … , 𝑝𝑛, we
already know our theorem for them.

• The one which does not include ⊥ is
satisfiable.



Resolution: Completeness Proof

• Both 𝒮+ and 𝒮− are saturated.
• Indeed, any new resolution in 𝒮+ or in 𝒮−

would induce a resolution in 𝒮.
• Let us show that at least one of 𝒮+ and 𝒮−

is satisfiable.

• Suppose, both 𝒮+ and 𝒮− include ⊥.
• Then 𝒮 includes both 𝑞 and 𝑞, and therefore

⊥. Contradiction.
• Since 𝒮+ and 𝒮− use only 𝑝1, … , 𝑝𝑛, we
already know our theorem for them.

• The one which does not include ⊥ is
satisfiable.



Resolution: Completeness Proof

• Both 𝒮+ and 𝒮− are saturated.
• Indeed, any new resolution in 𝒮+ or in 𝒮−

would induce a resolution in 𝒮.
• Let us show that at least one of 𝒮+ and 𝒮−

is satisfiable.
• Suppose, both 𝒮+ and 𝒮− include ⊥.

• Then 𝒮 includes both 𝑞 and 𝑞, and therefore
⊥. Contradiction.

• Since 𝒮+ and 𝒮− use only 𝑝1, … , 𝑝𝑛, we
already know our theorem for them.

• The one which does not include ⊥ is
satisfiable.



Resolution: Completeness Proof

• Both 𝒮+ and 𝒮− are saturated.
• Indeed, any new resolution in 𝒮+ or in 𝒮−

would induce a resolution in 𝒮.
• Let us show that at least one of 𝒮+ and 𝒮−

is satisfiable.
• Suppose, both 𝒮+ and 𝒮− include ⊥.
• Then 𝒮 includes both 𝑞 and 𝑞, and therefore

⊥. Contradiction.

• Since 𝒮+ and 𝒮− use only 𝑝1, … , 𝑝𝑛, we
already know our theorem for them.

• The one which does not include ⊥ is
satisfiable.



Resolution: Completeness Proof

• Both 𝒮+ and 𝒮− are saturated.
• Indeed, any new resolution in 𝒮+ or in 𝒮−

would induce a resolution in 𝒮.
• Let us show that at least one of 𝒮+ and 𝒮−

is satisfiable.
• Suppose, both 𝒮+ and 𝒮− include ⊥.
• Then 𝒮 includes both 𝑞 and 𝑞, and therefore

⊥. Contradiction.
• Since 𝒮+ and 𝒮− use only 𝑝1, … , 𝑝𝑛, we
already know our theorem for them.

• The one which does not include ⊥ is
satisfiable.



Resolution: Completeness Proof

• Both 𝒮+ and 𝒮− are saturated.
• Indeed, any new resolution in 𝒮+ or in 𝒮−

would induce a resolution in 𝒮.
• Let us show that at least one of 𝒮+ and 𝒮−

is satisfiable.
• Suppose, both 𝒮+ and 𝒮− include ⊥.
• Then 𝒮 includes both 𝑞 and 𝑞, and therefore

⊥. Contradiction.
• Since 𝒮+ and 𝒮− use only 𝑝1, … , 𝑝𝑛, we
already know our theorem for them.

• The one which does not include ⊥ is
satisfiable.



Resolution: Completeness Proof

• If 𝒮+ is satisfiable, take the satisfying
assignment and let 𝑞 = 0.

• Clauses without 𝑞 are already satisfied via
𝒮+.

• Clauses with 𝑞 are satisfied by 𝑞 = 1.
• Dually, if 𝒮− is satisfiable, take 𝑞 = 1.



Resolution: Completeness Proof

• If 𝒮+ is satisfiable, take the satisfying
assignment and let 𝑞 = 0.

• Clauses without 𝑞 are already satisfied via
𝒮+.

• Clauses with 𝑞 are satisfied by 𝑞 = 1.
• Dually, if 𝒮− is satisfiable, take 𝑞 = 1.



Resolution: Completeness Proof

• If 𝒮+ is satisfiable, take the satisfying
assignment and let 𝑞 = 0.

• Clauses without 𝑞 are already satisfied via
𝒮+.

• Clauses with 𝑞 are satisfied by 𝑞 = 1.

• Dually, if 𝒮− is satisfiable, take 𝑞 = 1.



Resolution: Completeness Proof

• If 𝒮+ is satisfiable, take the satisfying
assignment and let 𝑞 = 0.

• Clauses without 𝑞 are already satisfied via
𝒮+.

• Clauses with 𝑞 are satisfied by 𝑞 = 1.
• Dually, if 𝒮− is satisfiable, take 𝑞 = 1.



Beyond Propositional: Predicate Logic

• Of course, Boolean (propositional) logic is
too weak for many situations.

• In order to allow richer expressive
capabilities, more powerful logical
languages were introduced.

• One of those is first-order predicate logic,
which is usually used to formalize
mathematics.



Beyond Propositional: Predicate Logic

• Of course, Boolean (propositional) logic is
too weak for many situations.

• In order to allow richer expressive
capabilities, more powerful logical
languages were introduced.

• One of those is first-order predicate logic,
which is usually used to formalize
mathematics.



Beyond Propositional: Predicate Logic

• Of course, Boolean (propositional) logic is
too weak for many situations.

• In order to allow richer expressive
capabilities, more powerful logical
languages were introduced.

• One of those is first-order predicate logic,
which is usually used to formalize
mathematics.



Predicate Logic

• In predicate logic, we have individual
variables which range over a domain.

• Atomic formulae are of the form
𝑃(𝑥, 𝑦, 𝑧, …), where 𝑃 is a predicate symbol.

• E.g., a two-argument 𝑃 denotes a binary
relation (say, 𝑥 < 𝑦, written as < (𝑥, 𝑦)).‘

• Besides propositional operations (→, ∨, ∧,
¬), there are quantifiers ∀ (forall) and
∃ (exists).



Predicate Logic

• In predicate logic, we have individual
variables which range over a domain.

• Atomic formulae are of the form
𝑃(𝑥, 𝑦, 𝑧, …), where 𝑃 is a predicate symbol.

• E.g., a two-argument 𝑃 denotes a binary
relation (say, 𝑥 < 𝑦, written as < (𝑥, 𝑦)).‘

• Besides propositional operations (→, ∨, ∧,
¬), there are quantifiers ∀ (forall) and
∃ (exists).



Predicate Logic

• In predicate logic, we have individual
variables which range over a domain.

• Atomic formulae are of the form
𝑃(𝑥, 𝑦, 𝑧, …), where 𝑃 is a predicate symbol.

• E.g., a two-argument 𝑃 denotes a binary
relation (say, 𝑥 < 𝑦, written as < (𝑥, 𝑦)).‘

• Besides propositional operations (→, ∨, ∧,
¬), there are quantifiers ∀ (forall) and
∃ (exists).



Predicate Logic

• In predicate logic, we have individual
variables which range over a domain.

• Atomic formulae are of the form
𝑃(𝑥, 𝑦, 𝑧, …), where 𝑃 is a predicate symbol.

• E.g., a two-argument 𝑃 denotes a binary
relation (say, 𝑥 < 𝑦, written as < (𝑥, 𝑦)).‘

• Besides propositional operations (→, ∨, ∧,
¬), there are quantifiers ∀ (forall) and
∃ (exists).



Predicate Logic: Example

∀𝑥∀𝑦(𝑅(𝑥, 𝑦) → ∃𝑧(𝑅(𝑥, 𝑧) ∧ 𝑅(𝑧, 𝑦)))

• This formula expresses the density of the
order.

• Its truth depends on the interpretation:
e.g., it is true on ℚ (rational numbers), but
false on ℤ (integers).

• So, it is satisfiable, but not universally true.

• Again, universal truth and satisfiability are
dual: 𝐴 is universally true iff ¬𝐴 is not
satisfiable.



Predicate Logic: Example

∀𝑥∀𝑦(𝑥 < 𝑦 → ∃𝑧(𝑥 < 𝑧 ∧ 𝑧 < 𝑦))

• This formula expresses the density of the
order.

• Its truth depends on the interpretation:
e.g., it is true on ℚ (rational numbers), but
false on ℤ (integers).

• So, it is satisfiable, but not universally true.

• Again, universal truth and satisfiability are
dual: 𝐴 is universally true iff ¬𝐴 is not
satisfiable.



Predicate Logic: Example

∀𝑥∀𝑦(𝑥 < 𝑦 → ∃𝑧(𝑥 < 𝑧 ∧ 𝑧 < 𝑦))

• This formula expresses the density of the
order.

• Its truth depends on the interpretation:
e.g., it is true on ℚ (rational numbers), but
false on ℤ (integers).

• So, it is satisfiable, but not universally true.

• Again, universal truth and satisfiability are
dual: 𝐴 is universally true iff ¬𝐴 is not
satisfiable.



Predicate Logic: Example

∀𝑥∀𝑦(𝑥 < 𝑦 → ∃𝑧(𝑥 < 𝑧 ∧ 𝑧 < 𝑦))

• This formula expresses the density of the
order.

• Its truth depends on the interpretation:
e.g., it is true on ℚ (rational numbers), but
false on ℤ (integers).

• So, it is satisfiable, but not universally true.

• Again, universal truth and satisfiability are
dual: 𝐴 is universally true iff ¬𝐴 is not
satisfiable.



Predicate Logic: Example

∀𝑥∀𝑦(𝑥 < 𝑦 → ∃𝑧(𝑥 < 𝑧 ∧ 𝑧 < 𝑦))

• This formula expresses the density of the
order.

• Its truth depends on the interpretation:
e.g., it is true on ℚ (rational numbers), but
false on ℤ (integers).

• So, it is satisfiable, but not universally true.

• Again, universal truth and satisfiability are
dual: 𝐴 is universally true iff ¬𝐴 is not
satisfiable.



Predicate Logic: Example

∀𝑥∀𝑦(𝑥 < 𝑦 → ∃𝑧(𝑥 < 𝑧 ∧ 𝑧 < 𝑦))

• This formula expresses the density of the
order.

• Its truth depends on the interpretation:
e.g., it is true on ℚ (rational numbers), but
false on ℤ (integers).

• So, it is satisfiable, but not universally true.
• Again, universal truth and satisfiability are
dual: 𝐴 is universally true iff ¬𝐴 is not
satisfiable.



Predicate Logic: Example

• Other desired properties of <: transitivity,
antisymmetry, linearity, are also expressible
by first-order formulae (see exercises).

• Thus, one may write a formula which states
that < is a dense linear order and has at
least two elements.

• Any such structure is necessarily infinite,
thus, one cannot reduce checking
satisfiability (or universal truth) to finite
structures.



Predicate Logic: Example

• Other desired properties of <: transitivity,
antisymmetry, linearity, are also expressible
by first-order formulae (see exercises).

• Thus, one may write a formula which states
that < is a dense linear order and has at
least two elements.

• Any such structure is necessarily infinite,
thus, one cannot reduce checking
satisfiability (or universal truth) to finite
structures.



Predicate Logic: Example

• Other desired properties of <: transitivity,
antisymmetry, linearity, are also expressible
by first-order formulae (see exercises).

• Thus, one may write a formula which states
that < is a dense linear order and has at
least two elements.

• Any such structure is necessarily infinite,
thus, one cannot reduce checking
satisfiability (or universal truth) to finite
structures.



Example: Paradox of Material Implication
• Moving to first-order logic allows resolving
one of the so-called paradoxes of material
implication.

• “If I’m in London, I’m in England. If I’m in
Paris, I’m in France. Therefore, if I’m in
London, I’m in France, or if I’m in Paris, I’m
in England”.

• A naive formulation in Boolean logic is a
tautology:

((𝐿 → 𝐸)∧(𝑃 → 𝐹)) → ((𝐿 → 𝐹)∨(𝑃 → 𝐸)).



Example: Paradox of Material Implication
• Moving to first-order logic allows resolving
one of the so-called paradoxes of material
implication.

• “If I’m in London, I’m in England. If I’m in
Paris, I’m in France. Therefore, if I’m in
London, I’m in France, or if I’m in Paris, I’m
in England”.

• A naive formulation in Boolean logic is a
tautology:

((𝐿 → 𝐸)∧(𝑃 → 𝐹)) → ((𝐿 → 𝐹)∨(𝑃 → 𝐸)).



Example: Paradox of Material Implication
• Moving to first-order logic allows resolving
one of the so-called paradoxes of material
implication.

• “If I’m in London, I’m in England. If I’m in
Paris, I’m in France. Therefore, if I’m in
London, I’m in France, or if I’m in Paris, I’m
in England”.

• A naive formulation in Boolean logic is a
tautology:

((𝐿 → 𝐸)∧(𝑃 → 𝐹)) → ((𝐿 → 𝐹)∨(𝑃 → 𝐸)).



Example: Paradox of Material Implication
• The informal argument, however is
obviously invalid.

• A more accurate formulation in predicate
logic adds a dependency on the moment of
time 𝑡: “If I’m in London, I’m in England” is
a universal statement, ∀𝑡 (𝐿(𝑡) → 𝐸(𝑡)).

• The resulting first-order formula is not
universally true:

(∀𝑡 (𝐿(𝑡) → 𝐸(𝑡)) ∧ ∀𝑡 (𝑃 (𝑡) → 𝐹(𝑡))) →
(∀𝑡 (𝐿(𝑡) → 𝐹(𝑡)) ∨ ∀𝑡 (𝑃 (𝑡) → 𝐸(𝑡)))



Example: Paradox of Material Implication
• The informal argument, however is
obviously invalid.

• A more accurate formulation in predicate
logic adds a dependency on the moment of
time 𝑡: “If I’m in London, I’m in England” is
a universal statement, ∀𝑡 (𝐿(𝑡) → 𝐸(𝑡)).

• The resulting first-order formula is not
universally true:

(∀𝑡 (𝐿(𝑡) → 𝐸(𝑡)) ∧ ∀𝑡 (𝑃 (𝑡) → 𝐹(𝑡))) →
(∀𝑡 (𝐿(𝑡) → 𝐹(𝑡)) ∨ ∀𝑡 (𝑃 (𝑡) → 𝐸(𝑡)))



Example: Paradox of Material Implication
• The informal argument, however is
obviously invalid.

• A more accurate formulation in predicate
logic adds a dependency on the moment of
time 𝑡: “If I’m in London, I’m in England” is
a universal statement, ∀𝑡 (𝐿(𝑡) → 𝐸(𝑡)).

• The resulting first-order formula is not
universally true:

(∀𝑡 (𝐿(𝑡) → 𝐸(𝑡)) ∧ ∀𝑡 (𝑃 (𝑡) → 𝐹(𝑡))) →
(∀𝑡 (𝐿(𝑡) → 𝐹(𝑡)) ∨ ∀𝑡 (𝑃 (𝑡) → 𝐸(𝑡)))



Algorithmic Issues
• Satisfiability in predicate logic (unlike
Boolean logic) is algorithmically
undecidable.

• This means that there is theoretically no
algorithm for solving it, even without any time
constraints.

• This motivates studying decidable
fragments of predicate logic, where we
restrict its expressivity in order to gain
decidability.

• Toy example: predicate logic with only unary
predicates.



Algorithmic Issues
• Satisfiability in predicate logic (unlike
Boolean logic) is algorithmically
undecidable.

• This means that there is theoretically no
algorithm for solving it, even without any time
constraints.

• This motivates studying decidable
fragments of predicate logic, where we
restrict its expressivity in order to gain
decidability.

• Toy example: predicate logic with only unary
predicates.



Algorithmic Issues
• Satisfiability in predicate logic (unlike
Boolean logic) is algorithmically
undecidable.

• This means that there is theoretically no
algorithm for solving it, even without any time
constraints.

• This motivates studying decidable
fragments of predicate logic, where we
restrict its expressivity in order to gain
decidability.

• Toy example: predicate logic with only unary
predicates.



Algorithmic Issues
• Satisfiability in predicate logic (unlike
Boolean logic) is algorithmically
undecidable.

• This means that there is theoretically no
algorithm for solving it, even without any time
constraints.

• This motivates studying decidable
fragments of predicate logic, where we
restrict its expressivity in order to gain
decidability.

• Toy example: predicate logic with only unary
predicates.



Algorithmic Issues

• Indeed, if we have only unary predicates,
𝑃1, …, 𝑃𝑛, then for a given element 𝑎 they
can have only 2𝑛 possible values.

• Elements on which all 𝑃𝑖 have the same
value, may be identified.

• Thus, now we have finite search over all
possible interpretations, as we have had in
Boolean logic.



Algorithmic Issues

• Indeed, if we have only unary predicates,
𝑃1, …, 𝑃𝑛, then for a given element 𝑎 they
can have only 2𝑛 possible values.

• Elements on which all 𝑃𝑖 have the same
value, may be identified.

• Thus, now we have finite search over all
possible interpretations, as we have had in
Boolean logic.



Algorithmic Issues

• Indeed, if we have only unary predicates,
𝑃1, …, 𝑃𝑛, then for a given element 𝑎 they
can have only 2𝑛 possible values.

• Elements on which all 𝑃𝑖 have the same
value, may be identified.

• Thus, now we have finite search over all
possible interpretations, as we have had in
Boolean logic.



Predicate Calculus

• How one understands that a first-order
formula is universally true, if checking it by
definition requires infinite time?

• Universally true formulae can be proved as
theorems in the predicate calculus.

• The classical predicate calculus is obtained
from Boolean logic by adding axioms and
rules for quantifiers.



Predicate Calculus

• How one understands that a first-order
formula is universally true, if checking it by
definition requires infinite time?

• Universally true formulae can be proved as
theorems in the predicate calculus.

• The classical predicate calculus is obtained
from Boolean logic by adding axioms and
rules for quantifiers.



Predicate Calculus

• How one understands that a first-order
formula is universally true, if checking it by
definition requires infinite time?

• Universally true formulae can be proved as
theorems in the predicate calculus.

• The classical predicate calculus is obtained
from Boolean logic by adding axioms and
rules for quantifiers.



Predicate Calculus
1. All Boolean tautologies, where arbitrary
formulae can be substituted.

2. Quantifier axioms:

(∀𝑥 𝐴(𝑥)) → 𝐴(𝑡)
𝐴(𝑡) → ∃𝑥 𝐴(𝑥)

(Here the substitution of 𝑡 for 𝑥 should be
correct.)

3. Rules of inference:
𝐴 𝐴 → 𝐵

𝐵
𝐴(𝑥)

∀𝑥 𝐴(𝑥)



Predicate Calculus

• Gödel’s completeness theorem: a formula
𝐴 can be derived from a set of axioms Γ iff
𝐴 is true under any interpretation where so
is Γ.

• Thus, if something is a theorem, one can
find this out by searching over possible
proofs.

• However, if 𝐴 is not a theorem, it does not
mean that ¬𝐴 is. Thus, falsifying a formula
can be a non-trivial task.



Predicate Calculus

• Gödel’s completeness theorem: a formula
𝐴 can be derived from a set of axioms Γ iff
𝐴 is true under any interpretation where so
is Γ.

• Thus, if something is a theorem, one can
find this out by searching over possible
proofs.

• However, if 𝐴 is not a theorem, it does not
mean that ¬𝐴 is. Thus, falsifying a formula
can be a non-trivial task.



Predicate Calculus

• Gödel’s completeness theorem: a formula
𝐴 can be derived from a set of axioms Γ iff
𝐴 is true under any interpretation where so
is Γ.

• Thus, if something is a theorem, one can
find this out by searching over possible
proofs.

• However, if 𝐴 is not a theorem, it does not
mean that ¬𝐴 is. Thus, falsifying a formula
can be a non-trivial task.



Decidable Fragments

• More interesting examples include
description logics used in formal
ontologies (used in OWL, SNOMED CT etc).

• These systems are between propositional
and predicate logics and are used in
knowledge representation.

• Knowledge bases extend relational
databases by a richer, logically enhanced
language of queries. (This requires,
obviously, fast algorithms.)



Decidable Fragments

• More interesting examples include
description logics used in formal
ontologies (used in OWL, SNOMED CT etc).

• These systems are between propositional
and predicate logics and are used in
knowledge representation.

• Knowledge bases extend relational
databases by a richer, logically enhanced
language of queries. (This requires,
obviously, fast algorithms.)



Decidable Fragments

• More interesting examples include
description logics used in formal
ontologies (used in OWL, SNOMED CT etc).

• These systems are between propositional
and predicate logics and are used in
knowledge representation.

• Knowledge bases extend relational
databases by a richer, logically enhanced
language of queries. (This requires,
obviously, fast algorithms.)


