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Satisfiability

• We continue discussing satisfiability of
Boolean formula.

• A satisfying assignment is an assignment of
0’s and 1’s to variables, which makes the
formula true (value = 1).

• Satisfiability is a model example of a very
general situation of finding (more
precisely: checking for existence) an object
with given properties.
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Resolution Method
• Recall that resolution method is a method
of determining whether a Boolean formula
given in CNF is satisfiable.

• A CNF is a conjunction of clauses, where
each clause is a disjunction of literals (e.g.,
𝑥 ∨ 𝑦 ∨ 𝑧).

• The algorithm saturates the CNF by adding
all clauses which can be generated by the
resolution rule:

𝐴 ∨ 𝑝 𝐵 ∨ 𝑝
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Resolution Method

• If the empty clause (⊥) got obtained, the
CNF is not satisfiable (because the
resolution rule keeps validity).

• Moreover, by completeness theorem this is
a criterion: if the empty clause is not
obtained, the CNF is satisfiable.
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Resolution Method
• However, the non-derivability of the empty
clause does not give us the satisfying
assignment itself.

• In other words, the method solves the
decision problems (“yes”/“no”), but not the
search problem.

• If we are lucky enough, and the CNF has
only one satisfying assignment, then after
saturation we get isolated literals (like 𝑥 or
𝑦, for example), which dictate the desired
satisfying assignment (e.g., 𝑥 = 1 or 𝑦 = 0).
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Resolution Method

• In other cases, we can use the following
consideration.

Proposition
If a saturated CNF 𝒮 includes neither ⊥ nor 𝑥
as an isolated literal, then 𝒮 ∧ 𝑥 is also
satisfiable. Same for swapping 𝑥 and 𝑥.

• In particular, if 𝒮 is satisfiable and includes
neither 𝑥 nor 𝑥, we can make an arbitrary
choice for the value of 𝑥.
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Resolution Method

• However, after making this arbitrary choice,
we have to saturate 𝒮 ∧ 𝑥 (or 𝒮 ∧ 𝑥) again
before considering another variable.

• For example, the CNF (𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑧) is
saturated, but choosing 𝑥 = 0 (adding 𝑥)
allows new resolutions giving 𝑦 and 𝑧, and
thus dictating values for all other variables.
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• Indeed, new resolutions applied when we
saturate 𝒮 ∧ 𝑥, should involve 𝑥.

• Therefore, if such a resolution generates ⊥,
there should have been 𝑥 in the original 𝒮.
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Resolution for 2-CNF
• If clauses include at least 3 literals,
resolution can lead to growth:

𝑥 ∨ 𝑦 ∨ 𝑝 𝑧 ∨ 𝑤 ∨ 𝑝
𝑥 ∨ 𝑦 ∨ 𝑧 ∨ 𝑤

• This makes saturation a potentially
exponential procedure.

• However, for 2-CNF (each clause includes
no more than 2 literals) the clauses do not
grow:

𝑥 ∨ 𝑝 𝑧 ∨ 𝑝
𝑥 ∨ 𝑧



Resolution for 2-CNF
• If clauses include at least 3 literals,
resolution can lead to growth:

𝑥 ∨ 𝑦 ∨ 𝑝 𝑧 ∨ 𝑤 ∨ 𝑝
𝑥 ∨ 𝑦 ∨ 𝑧 ∨ 𝑤

• This makes saturation a potentially
exponential procedure.

• However, for 2-CNF (each clause includes
no more than 2 literals) the clauses do not
grow:

𝑥 ∨ 𝑝 𝑧 ∨ 𝑝
𝑥 ∨ 𝑧



Resolution for 2-CNF
• If clauses include at least 3 literals,
resolution can lead to growth:

𝑥 ∨ 𝑦 ∨ 𝑝 𝑧 ∨ 𝑤 ∨ 𝑝
𝑥 ∨ 𝑦 ∨ 𝑧 ∨ 𝑤

• This makes saturation a potentially
exponential procedure.

• However, for 2-CNF (each clause includes
no more than 2 literals) the clauses do not
grow:

𝑥 ∨ 𝑝 𝑧 ∨ 𝑝
𝑥 ∨ 𝑧



Resolution for 2-CNF
• Thus, the total number of possible clauses
does not exceed 4𝑛2 + 2𝑛 + 1, where 𝑛 is
the number of variables.

• This makes the saturation process
polynomial.

• This can be organized as follows: take each
clause from the list, starting from the
second one, and try to resolve it against
eariler ones. Does it give a new clause?

• New clauses are added to the bottom of
the list.
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Resolution: Completeness Proof
Theorem
If one cannot obtain the empty clause by
applying resolutions, starting from the given
CNF, then the CNF is satisfiable.

• We prove this theorem using induction on
the number of variables.

• That is, we establish it for zero variables
(trivial) and then validate the step from 𝑛
to 𝑛 + 1 variables.
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Resolution: Completeness Proof

• Zero variables: the only possible clause is
⊥, therefore, our CNF is empty.

• From 𝑛 to 𝑛 + 1. Let the extra variable be
𝑝𝑛+1 = 𝑞 and let 𝒮 denote the saturation of
our CNF.

• Take all clauses which do not include 𝑞,
and remove 𝑞 out of them. This gives 𝒮+.

• Dually, take clauses without 𝑞 and remove
𝑞. This gives 𝒮−.
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Resolution: Completeness Proof

• Both 𝒮+ and 𝒮− are saturated.

• Indeed, any new resolution in 𝒮+ or in 𝒮−

would induce a resolution in 𝒮.
• Let us show that at least one of 𝒮+ and 𝒮−

is satisfiable.

• Suppose, both 𝒮+ and 𝒮− include ⊥.
• Then 𝒮 includes both 𝑞 and 𝑞, and therefore

⊥. Contradiction.
• Since 𝒮+ and 𝒮− use only 𝑝1, … , 𝑝𝑛, we
already know our theorem for them.

• The one which does not include ⊥ is
satisfiable.
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Resolution: Completeness Proof

• If 𝒮+ is satisfiable, take the satisfying
assignment and let 𝑞 = 0.

• Clauses without 𝑞 are already satisfied via
𝒮+.

• Clauses with 𝑞 are satisfied by 𝑞 = 1.
• Dually, if 𝒮− is satisfiable, take 𝑞 = 1.
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Beyond Propositional: Predicate Logic

• Of course, Boolean (propositional) logic is
too weak for many situations.

• In order to allow richer expressive
capabilities, more powerful logical
languages were introduced.

• One of those is first-order predicate logic,
which is usually used to formalize
mathematics.
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Predicate Logic

• In predicate logic, we have individual
variables which range over a domain.

• Atomic formulae are of the form
𝑃(𝑥, 𝑦, 𝑧, …), where 𝑃 is a predicate symbol.

• E.g., a two-argument 𝑃 denotes a binary
relation (say, 𝑥 < 𝑦, written as < (𝑥, 𝑦)).‘

• Besides propositional operations (→, ∨, ∧,
¬), there are quantifiers ∀ (forall) and
∃ (exists).
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Predicate Logic: Example

∀𝑥∀𝑦(𝑅(𝑥, 𝑦) → ∃𝑧(𝑅(𝑥, 𝑧) ∧ 𝑅(𝑧, 𝑦)))

• This formula expresses the density of the
order.

• Its truth depends on the interpretation:
e.g., it is true on ℚ (rational numbers), but
false on ℤ (integers).

• So, it is satisfiable, but not universally true.

• Again, universal truth and satisfiability are
dual: 𝐴 is universally true iff ¬𝐴 is not
satisfiable.
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Predicate Logic: Example

• Other desired properties of <: transitivity,
antisymmetry, linearity, are also expressible
by first-order formulae (see exercises).

• Thus, one may write a formula which states
that < is a dense linear order and has at
least two elements.

• Any such structure is necessarily infinite,
thus, one cannot reduce checking
satisfiability (or universal truth) to finite
structures.
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Example: Paradox of Material Implication
• Moving to first-order logic allows resolving
one of the so-called paradoxes of material
implication.

• “If I’m in London, I’m in England. If I’m in
Paris, I’m in France. Therefore, if I’m in
London, I’m in France, or if I’m in Paris, I’m
in England”.

• A naive formulation in Boolean logic is a
tautology:

((𝐿 → 𝐸)∧(𝑃 → 𝐹)) → ((𝐿 → 𝐹)∨(𝑃 → 𝐸)).
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Example: Paradox of Material Implication
• The informal argument, however is
obviously invalid.

• A more accurate formulation in predicate
logic adds a dependency on the moment of
time 𝑡: “If I’m in London, I’m in England” is
a universal statement, ∀𝑡 (𝐿(𝑡) → 𝐸(𝑡)).

• The resulting first-order formula is not
universally true:

(∀𝑡 (𝐿(𝑡) → 𝐸(𝑡)) ∧ ∀𝑡 (𝑃 (𝑡) → 𝐹(𝑡))) →
(∀𝑡 (𝐿(𝑡) → 𝐹(𝑡)) ∨ ∀𝑡 (𝑃 (𝑡) → 𝐸(𝑡)))
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Algorithmic Issues
• Satisfiability in predicate logic (unlike
Boolean logic) is algorithmically
undecidable.

• This means that there is theoretically no
algorithm for solving it, even without any time
constraints.

• This motivates studying decidable
fragments of predicate logic, where we
restrict its expressivity in order to gain
decidability.

• Toy example: predicate logic with only unary
predicates.
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Algorithmic Issues

• Indeed, if we have only unary predicates,
𝑃1, …, 𝑃𝑛, then for a given element 𝑎 they
can have only 2𝑛 possible values.

• Elements on which all 𝑃𝑖 have the same
value, may be identified.

• Thus, now we have finite search over all
possible interpretations, as we have had in
Boolean logic.
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Predicate Calculus

• How one understands that a first-order
formula is universally true, if checking it by
definition requires infinite time?

• Universally true formulae can be proved as
theorems in the predicate calculus.

• The classical predicate calculus is obtained
from Boolean logic by adding axioms and
rules for quantifiers.
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Predicate Calculus
1. All Boolean tautologies, where arbitrary
formulae can be substituted.

2. Quantifier axioms:

(∀𝑥 𝐴(𝑥)) → 𝐴(𝑡)
𝐴(𝑡) → ∃𝑥 𝐴(𝑥)

(Here the substitution of 𝑡 for 𝑥 should be
correct.)

3. Rules of inference:
𝐴 𝐴 → 𝐵

𝐵
𝐴(𝑥)

∀𝑥 𝐴(𝑥)



Predicate Calculus

• Gödel’s completeness theorem: a formula
𝐴 can be derived from a set of axioms Γ iff
𝐴 is true under any interpretation where so
is Γ.

• Thus, if something is a theorem, one can
find this out by searching over possible
proofs.

• However, if 𝐴 is not a theorem, it does not
mean that ¬𝐴 is. Thus, falsifying a formula
can be a non-trivial task.
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Decidable Fragments

• More interesting examples include
description logics used in formal
ontologies (used in OWL, SNOMED CT etc).

• These systems are between propositional
and predicate logics and are used in
knowledge representation.

• Knowledge bases extend relational
databases by a richer, logically enhanced
language of queries. (This requires,
obviously, fast algorithms.)
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