Turing Machines (exercises)

1. Construct a deterministic Turing machine which calculates $x+1$ from a natural x, where x is given
(a) in unary notation (as $\underbrace{1 \ldots 1}_{x \text { times }}$);
(b) in binary notation.
2. Prove, that the following set of words belongs to P (is polynomially decidable), by constructing a deterministic Turing machine with polynomial runtime which decides whether a word belongs to the set or not:
(a) $\{\underbrace{0 \ldots 0}_{k \text { times } k \text { times }} \underbrace{1 \ldots 1} \mid k \geq 1\} ;$
(b) $\left\{w w \mid w \in\{0,1\}^{*}\right\}$;
(c) $\{\underbrace{0 \ldots 0}_{k \text { times } k \text { times } k \text { times }} \underbrace{1 \ldots \ldots 0}_{k} \mid k \geq 1\}$.
3. Write down the sequence of configurations of the Turing machine from Exercise 2a, running on the following input:
(a) 00 ;
(b) 000111;
(c) 00111 .
4. Consider the non-deterministic Turing machine defined by the following table of transitions:

	Input symbol		
	0	1	B
q_{0}	$\left(q_{0}, 1, \rightarrow\right)$	$\left(q_{1}, 0, \rightarrow\right)$	-
	$\left(q_{1}, 0, \rightarrow\right)$ or $\left(q_{0}, 0, \leftarrow\right)$	$\left(q_{1}, 1, \rightarrow\right)$ or $\left(q_{0}, 1, \leftarrow\right)$	$\left(q_{2}, B, \rightarrow\right)$

(B stands for the blank symbol.)
(a) Draw its transitions as a graph.
(b) Which configurations are reachable by this machine, when started on input word 01 ?

Graphs (exercises)

5. The degree of a vertex is the number of edges connected to it. Can there be a graph with the following degrees of vertices?
(a) 9 vertices of degree 3,11 vertices of degree 4 , and 10 vertices of degree 5 (and no other vertices)?
(b) 2 vertices of degree 3 and 3 vertices of degree 2 ?
(c) one vertex of degree 1 , two vertices of degree 2 , one vertex of degree 3 , two vertices of degree 5 ?

If yes, how many edges should this graph have?
6. A Euler path in a graph is a path which visits each edge exactly once.
(a) Can a graph with the following degrees of vertices have a Euler path: 3 vertices of degree 3 and one vertex of degree 5 ?
(b) Will a graph with the following degrees of vertices always have a Euler path: 2 vertices of degree 1,10 vertices of degree 4 , and 7 vertices of degree 6 ?
7. A Hamiltonian cycle in a graph is a cycle which visits each vertex exactly once. Does the following graph have a Hamiltonian cycle?

