Final Exam

1. Construct a Boolean formula with three variables, p, q, and r, which is true if and only if at least two of these variables are assigned true. (This is called the majority function: the result is positive if and only if at least two of the three voters vote for it.)
2. Suppose a Boolean formula is constructed from variables (no constants) using only \vee and \wedge. Could such a formula be a tautology? If yes, present an example. If no, explain why.
3. Let G be a graph with the set of vertices $V=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\}$ and let $\operatorname{deg} v_{1}=\operatorname{deg} v_{2}=5$, $\operatorname{deg} v_{3}=4, \operatorname{deg} v_{4}=3, \operatorname{deg} v_{5}=2$. ($\operatorname{deg} v_{i}$ is the degree of v_{i}, that is, the number of edges connected to v_{i}. Parallel edges and loops are not allowed.) Draw the graph G and find $\operatorname{deg} v_{6}$.
4. Construct a Hamiltonian cycle on the following graph. (As the answer, please write down the sequence of vertices of the cycle.)

5. Find the minimal k for which the graph from Task 4 has a proper k-coloring. Provide a coloring of the graph's vertices in k colors, such that any two adjacent vertices have different colors, and explain why $(k-1)$ colors are not sufficient. (The coloring may be provided as a mapping, like " $1-$ red, $2-$ blue, 3 - green, 4 - red, ...")
6. Suppose $P \neq$ NP. Could there exist a polynomial-time algorithm which, given a Boolean formula φ with n variables, answers whether φ has strictly more than 2^{n-1} satisfying assignments?
