Final Exam

- 1. Construct a Boolean formula with three variables, p, q, and r, which is true if and only if at least two of these variables are assigned true. (This is called the *majority function:* the result is positive if and only if at least two of the three voters vote for it.)
- 2. Suppose a Boolean formula is constructed from variables (no constants) using only \lor and \land . Could such a formula be a tautology? If yes, present an example. If no, explain why.
- 3. Let G be a graph with the set of vertices $V = \{v_1, v_2, v_3, v_4, v_5, v_6\}$ and let deg $v_1 = \text{deg } v_2 = 5$, deg $v_3 = 4$, deg $v_4 = 3$, deg $v_5 = 2$. (deg v_i is the degree of v_i , that is, the number of edges connected to v_i . Parallel edges and loops are not allowed.) Draw the graph G and find deg v_6 .
- 4. Construct a Hamiltonian cycle on the following graph. (As the answer, please write down the sequence of vertices of the cycle.)

- 5. Find the minimal k for which the graph from Task 4 has a proper k-coloring. Provide a coloring of the graph's vertices in k colors, such that any two adjacent vertices have different colors, and explain why (k-1) colors are not sufficient. (The coloring may be provided as a mapping, like "1 red, 2 blue, 3 green, 4 red, …")
- 6. Suppose $P \neq NP$. Could there exist a polynomial-time algorithm which, given a Boolean formula φ with *n* variables, answers whether φ has *strictly more* than 2^{n-1} satisfying assignments?