Final Exam

1. (1 point) Is the following Boolean formula a tautology?

$$
((p \rightarrow(q \vee \neg r)) \wedge(q \rightarrow s) \wedge(\neg r \rightarrow(\neg s \rightarrow p)) \wedge(p \rightarrow \neg s)) \rightarrow \neg p
$$

If not, provide a falsifying assignment.
2. (1 point) Is the following first-order formula satisfiable?

$$
(\forall x \exists y(R(x, y) \wedge P(y))) \wedge(\forall x \exists y(R(x, y) \wedge \neg P(y)))
$$

If yes, provide an interpretation of predicate symbols R and P on some set (domain) M, which makes the formula true.
3. (1 point) Does there exist a polynomial time algorithm which, being given a graph G, yields all Euler paths in G.
4. (2 points) Find the minimal k for which the graph below has a correct k-coloring. (A correct k coloring is a coloring of vertices in k colors, such that ends of each edge have different colors.) Provide a correct k-coloring and explain why $(k-1)$ colors are not sufficient. (The coloring may be provided as a mapping, like " 1 - red, 2 - blue, 3 - green, 4 - red, ...")

5. (2 points) The INTPROG problem (so-called "integer programming") is formulated as follows. Given a matrix $\left(a_{i, j}\right)_{1 \leq i \leq n, 1 \leq j \leq m+1}$ of integers ($a_{i, j} \in \mathbb{Z}$), answer whether the system of inequations

$$
\left\{\begin{array}{l}
a_{1,1} x_{1}+\ldots+a_{1, m} x_{m}+a_{1, m+1} \geq 0 \\
a_{2,1} x_{1}+\ldots+a_{2, m} x_{m}+a_{2, m+1} \geq 0 \\
\ldots \\
a_{n, 1} x_{1}+\ldots+a_{n, m} x_{m}+a_{n, m+1} \geq 0
\end{array}\right.
$$

has an integer solution $\left(x_{1}, \ldots, x_{m}\right)$ (i.e., such $x_{1}, \ldots, x_{m} \in \mathbb{Z}$ that all inequations become true). Show that INTPROG is NP-hard by proving that 3 -SAT \leq_{m}^{P} INTPROG.
6. (2 points) Suppose $\mathrm{P} \neq$ NP. Could there exist a polynomial-time algorithm which, being given a graph G, answers whether the number of correct 3 -colorings of G is greater or equal than 3 ?
(One extra point is added just for the fact of participating in the exam. Participating means submitting something within the scope of the deadline.)

