Final Exam

1. (1 point) Is the following Boolean formula a tautology?

$$\left(((p \land \neg q) \to r) \land ((s \to \neg r) \lor (r \to \neg p))\right) \to ((\neg s \to q) \to q)$$

If not, provide a falsifying assignment.

2. (1 point) Is the following first-order formula generally true?

$$\forall x \left(\left(\forall y \left(R(x, y) \to (P(y) \lor Q(y)) \right) \right) \to \left(\left(\forall y \left(R(x, y) \to P(y) \right) \right) \lor \left(\forall y \left(R(x, y) \to Q(y) \right) \right) \right) \right)$$

If not, provide an interpretation of predicate symbols P, Q, and R on some set (domain) M, which makes the formula false.

- 3. (1 point) Does there exist an algorithm with polynomial delay that yields all correct colorings of a given graph G in 2 colors?
- 4. (2 points) Find the maximal k for which the graph below has an independent set of k vertices. Provide an example of such a set (as a list of vertex numbers) and prove that for larger values of k such an independent set does not exist.

5. (2 points) In this task, we consider undirected graphs without loops and parallel edges. A graph homomorphism from graph $G_1 = (V_1, E_1)$ to graph $G_2 = (V_2, E_2)$ is a mapping $f: V_1 \to V_2$ such that, for any pair of vertices u, v of G_1 , if $(u, v) \in E_1$, then $(f(u), f(v)) \in E_2$. (In other words, a homomorphism is a mapping of vertices which preserves edges. This mapping is not required to be injective (i.e., two vertices of G_1 could map onto one vertex of G_2); neither it is required to be surjective (i.e., G_2 could include vertices not covered by this mapping).) Prove that the following problem is NP-complete: given two graphs G_1 and G_2 , determine whether there is a homomorphism from G_1 to G_2 .

(*Hint*: try backwards reduction from a problem on graphs which you know to be NP-complete.)

6. (2 points) Suppose $P \neq NP$. Could there exist a polynomial-time algorithm which, being given a Boolean formula φ , answers whether it has *exactly one* satisfying assignment? (*Comment:* informal argumentation like "this problem is obviously harder than SAT, therefore not polynomially solvable" will not be accepted. There should be either a mathematical proof that the desired algorithm does not exist (e.g., by backwards reduction of a problem known to be hard), or a polynomial-time algorithm presented.)

(One extra point is added just for the fact of participating in the exam. Participating means submitting something within the scope of the deadline.)