## NP-completeness of the Hamiltonian Path Problem

Definition. A Hamiltonian path is a path in a graph which visits each vertex exactly once.
By HAMPATH we denote the following algorithmic problem: given a directed graph and two its vertices, $s$ and $t$, find out whether there exists a Hamiltonian path from $s$ to $t$.

Theorem 1. HAMPATH is NP-complete.
It is easy to see that HAMPATH belongs to the NP class: if the necessary Hamiltonian path exists, one can just non-deterministically guess it. In order to establish NP-hardness of HAMPATH, we prove that 3 -SAT $\leq_{m}^{P}$ HAMPATH.

In other words, we're going to construct a polynomially computable function $f$ which maps Boolean formulae in 3-CNF to directed graphs with designated vertices $s$ and $t$, such that $\varphi$ is satisfiable if and only if there is a Hamiltonian path from $s$ to $t$ in the graph $f(\varphi)$.

Let $\varphi$ include $m$ clauses. For each variable $x_{i}$ of $\varphi$ we construct the following subgraph called gadget:


In a Hamiltonian path, this gadget can be traversed, from $s_{i}$ to $t_{i}$, only in the following two ways, called green and red paths:


The green path will reflect $x_{i}$ being true; red stands for $x_{i}=$ false .
Next, for each clause $C_{j}$ we add a designated vertex $c_{j}$. If $C_{j}$ includes $x_{i}$, this vertex is connected to the $i$-th gadget in the following way, so that it can be visited when traversing the $i$-th gadget by the green path:


Symmetrically, if $C_{j}$ includes $\neg x_{i}$, we connect it to the $i$-th gadget in such a way that $c_{j}$ can be visited on the red traversing path of the gadget:


Finally, we connect the gadgets in a line, by identifying vertices: $t_{1}=s_{2}, t_{2}=s_{3}, \ldots$, $t_{n-1}=s_{n}$, and let $s=s_{1}$ and $t=t_{n}$.

Now the graph constructed has a Hamiltonian path from $s$ to $t$ if and only if $\varphi$ is satisfiable. Indeed, if $\varphi$ has a satisfying assignment, we traverse each gadget by green or red path, depending on whether $x_{i}$ is true or false under this assignment. Since in each clause at least one literal is true, the corresponding $c_{j}$ can be visited on one of these gadget traversing paths.

Conversely, if we have a Hamiltonian path from $s$ to $t$, this path should traverse each gadget by either green or red path, possibly with detours for visiting $c_{j}$ 's. The choice of green or red path on $i$-th gadget dictates the truth value of $x_{i}$. Since all $c_{j}$ 's were correctly visited, each $C_{j}$ is true under this assignment.

This finishes the proof of 3 -SAT $\leq_{m}^{P}$ HAMPATH and thus Theorem 1.

