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HW # 1: Practice in Boolean Logic

For the 1st home assignment, choose one of the
following tasks:

1. Given a Boolean formula, translate it into
Conjunctive Normal Form and into
Disjunctive Normal Form.

2. Given a Boolean formula in 2-CNF (in which
clauses could also be of the form (p->q)),
use the resolution method to determine
whether it is satisfiable.



HW # 1: Practice in Boolean Logic
• First, one needs to translate the input into
a machine-digestable form.

• Grammar for Boolean formulae:
Fm ::= Var | (Fm \/ Fm) | (Fm /\ Fm) | (Fm -> Fm)

• Another grammar:
Fm ::= Var | (Fm) | Fm \/ Fm | Fm /\ Fm | Fm -> Fm

• The second grammar is ambiguous: for
example, what does “p \/ q -> r”
mean?

We have to specify priority and
association rules.
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The Parsing Workflow

Lexical
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Lexical Analysis

• Input (stream of symbols):
int main(void)
{

printf("Hello, World!\n");
}

• Output (stream of tokens):

KW_INT IDENT(‘main’) ‘(’ KW_VOID ...

• Tokens are much more convenient to work
with (in the grammar).
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Running Example: Simplifying Polynomials
• We consider the following task: translating
polynomials into normal form.

(2𝑥 + 2)(3𝑥2 − 1) + 2𝑥 = 6𝑥3 + 6𝑥 − 2

• Grammar:
Expr ::= Tm | -Tm | Expr + Tm | Expr - Tm
Tm ::= Mon | (Expr) | Tm (Expr)
Mon ::= Int_opt 'x' Pow_opt | INT
Int_opt ::= INT | 𝜀
Pow_opt ::= '^' INT | 𝜀

• Input example:
(2x+2)(3x^2-1)+2x
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Implementation: Lex & Yacc

Lexical
Analyzer
Lex

input
(symbols)

stream of
tokens

Syntax Analyzer
(Parser)
YACC

recursive
structure

• YACC = Yet Another Compiler Compiler
• In Python, we use PLY (Python Lex & Yacc).
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PLY Code for Lexical Analysis
• Declare tokens and literals (one-symbol
tokens):
tokens = [ 'INT' ]
literals = ['+','-','(',')','^','x']

• For each token, declare a “t_”-function:
def t_INT(t):

r'\d+'
try:

t.value = int(t.value)
except ValueError:

print "Too large!", t.value
t.value = 0

return t
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PLY Code for Lexical Analysis

• r'\d+' is a regular expression for
sequences of decimal numbers.

• Another example: regular expression for
names (identifiers)
t_NAME = r'[a-zA-Z_][a-zA-Z0-9_]*'

• Finally, build the lexer:
import ply.lex as lex
lex.lex()
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PLY Code for Parsing
• Each rule of the grammar is implemented
as a “p_”-function:
def polymult(p,q) :

r = []
for i in xrange(len(p)) :

for j in xrange(len(q)) :
safeadd(r,i+j,p[i]*q[j])

return r

…
def p_tm_mult(p):

"tm : tm '(' expr ')'"
p[0] = polymult(p[1],p[3])



PLY Code for Parsing

def p_tm_mult(p):
"tm : tm '(' expr ')'"
p[0] = polymult(p[1],p[3])

• A “p_”-function generates an object p[0],
using p[1], p[2], …, which are obtained
from the lexer or recursively from parsing.
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PLY Code for Parsing

• Finally, build the parser:
import ply.yacc as yacc
yacc.yacc()

• The code of PLY examples is available on
the course’s webpage:
http://www.mi-ras.ru/~sk/lehre/dm_hse2019/

• For priorities, see another example
available on the webpage: calculator.

http://www.mi-ras.ru/~sk/lehre/dm_hse2019/
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HW # 1: Practice in Boolean Logic
Choose one:

1. Given a Boolean formula, constructed from variables using
/\ (conjunction), \/ (disjunction), -> (implication), and
~ (negation), translate it into Conjunctive Normal Form and
into Disjunctive Normal Form.

2. Given a Boolean formula in 2-CNF, use the resolution method
to determine whether it is satisfiable. Clauses of the 2-CNF
can be of one of the two forms: 𝛼 \/ 𝛽 or 𝛼 -> 𝛽, where 𝛼
and 𝛽 are literals (p or ~p, where p is a variable). The CNF is
presented in the usual notation, for example:
(p -> q) /\ (~r \/ s) /\ (~q -> p)

Tasks available at the course’s webpage.
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Good luck!


