Parsing with Lex \& Yacc

Stepan Kuznetsov
Discrete Math Bridging Course, HSE University

HW \# 1: Practice in Boolean Logic

For the 1st home assignment, choose one of the following tasks:

1. Given a Boolean formula, translate it into Conjunctive Normal Form and into Disjunctive Normal Form.
2. Given a Boolean formula in 2-CNF (in which clauses could also be of the form ($p->q$)), use the resolution method to determine whether it is satisfiable.

HW \# 1: Practice in Boolean Logic

- First, one needs to translate the input into a machine-digestable form.

HW \# 1: Practice in Boolean Logic

- First, one needs to translate the input into a machine-digestable form.
- Grammar for Boolean formulae:

```
Fm ::= Var | (Fm \/ Fm) | (Fm /\ Fm) | (Fm -> Fm)
```


HW \# 1: Practice in Boolean Logic

- First, one needs to translate the input into a machine-digestable form.
- Grammar for Boolean formulae:

```
Fm : : = Var | (Fm \/ Fm) | (Fm / Vm ) | (Fm -> Fm)
```

- Another grammar:

Fm : : = Var | (Fm) | Fm $\backslash / \mathrm{Fm} \mid \mathrm{Fm} /$ (Fm | Fm $\rightarrow \mathrm{Fm}$

HW \# 1: Practice in Boolean Logic

- First, one needs to translate the input into a machine-digestable form.
- Grammar for Boolean formulae:

Fm : : = Var | (Fm $\backslash / \mathrm{Fm})|(F m / \backslash \mathrm{Fm})|(F m->F m)$

- Another grammar:

Fm : : = Var | (Fm) | Fm \/ Fm | Fm / $\mathrm{Cm} \mid \mathrm{Fm}->\mathrm{Fm}$

- The second grammar is ambiguous: for example, what does "p \/ q -> r" mean?

HW \# 1: Practice in Boolean Logic

- First, one needs to translate the input into a machine-digestable form.
- Grammar for Boolean formulae:

Fm : : = Var | (Fm $\backslash / \mathrm{Fm})|(F m / \backslash \mathrm{Fm})|(F m->F m)$

- Another grammar:

Fm : := Var | (Fm) | Fm \/ Fm | Fm / \backslash Fm | Fm -> Fm

- The second grammar is ambiguous: for example, what does "p \/ q -> r" mean? We have to specify priority and association rules.

The Parsing Workflow

Lexical Analysis

- Input (stream of symbols):
int main(void)
\{
printf("Hello, World!\n");
\}

Lexical Analysis

- Input (stream of symbols):
int main(void)
\{
printf("Hello, World!\n"); \}
- Output (stream of tokens):

Lexical Analysis

- Input (stream of symbols):
int main(void)
\{
printf("Hello, World!\n"); \}
- Output (stream of tokens):

Kw_INT

Lexical Analysis

- Input (stream of symbols):
int main(void)
\{
printf("Hello, World!\n");
\}
- Output (stream of tokens):

KW_INT IDENT('main')

Lexical Analysis

- Input (stream of symbols):
int main(void)
\{
printf("Hello, World!\n");
\}
- Output (stream of tokens):

KW_INT IDENT('main') '('

Lexical Analysis

- Input (stream of symbols):
int main(void)
\{
printf("Hello, World!\n");
\}
- Output (stream of tokens):
KW_INT IDENT('main') '(' KW_VOID

Lexical Analysis

- Input (stream of symbols):
int main(void)
\{
printf("Hello, World!\n");
\}
- Output (stream of tokens):
KW_INT IDENT('main') '(' KW_VoID

Lexical Analysis

- Input (stream of symbols):
int main(void)
\{
printf("Hello, World!\n");
\}
- Output (stream of tokens):

KW_INT IDENT('main') '(' KW_VOID

- Tokens are much more convenient to work with (in the grammar).

Running Example: Simplifying Polynomials

- We consider the following task: translating polynomials into normal form.

Running Example: Simplifying Polynomials

- We consider the following task: translating polynomials into normal form.

$$
(2 x+2)\left(3 x^{2}-1\right)+2 x=6 x^{3}+6 x-2
$$

Running Example: Simplifying Polynomials

- We consider the following task: translating polynomials into normal form.

$$
(2 x+2)\left(3 x^{2}-1\right)+2 x=6 x^{3}+6 x-2
$$

- Grammar:

$$
\begin{array}{ll}
\text { Expr } & ::=\text { Tm } \mid- \text { Tm } \mid \text { Expr }+ \text { Tm | Expr - Tm } \\
\text { Tm } & ::=\text { Mon | (Expr) | Tm (Expr) } \\
\text { Mon } & ::=\text { Int_opt 'x' Pow_opt | INT } \\
\text { Int_opt }::=\text { INT | } \\
\text { Pow_opt }::=\wedge^{\prime \prime} \text { INT | } \varepsilon
\end{array}
$$

Running Example: Simplifying Polynomials

- We consider the following task: translating polynomials into normal form.

$$
(2 x+2)\left(3 x^{2}-1\right)+2 x=6 x^{3}+6 x-2
$$

- Grammar:

$$
\begin{array}{ll}
\text { Expr } & ::=\text { Tm | }- \text { Tm | Expr }+ \text { Tm | Expr }- \text { Tm } \\
\text { Tm } & ::=\text { Mon | (Expr) | Tm (Expr) } \\
\text { Mon } & ::=\text { Int_opt 'x' Pow_opt | INT } \\
\text { Int_opt }::=\text { INT | } \varepsilon \\
\text { Pow_opt }::=\text { '^' INT | } \varepsilon
\end{array}
$$

- Input example:

$$
(2 x+2)\left(3 x^{\wedge} 2-1\right)+2 x
$$

Implementation: Lex \& Yacc

Implementation: Lex \& Yacc

- YACC $=$ Yet Another Compiler Compiler

Implementation: Lex \& Yacc

- YACC $=$ Yet Another Compiler Compiler

Implementation: Lex \& Yacc

- YACC = Yet Another Compiler Compiler
- In Python, we use PLY (Python Lex \& Yacc).

PLY Code for Lexical Analysis

- Declare tokens and literals (one-symbol tokens):

```
tokens = [ 'INT' ]
literals = ['+','-','(',')','^','x']
```


PLY Code for Lexical Analysis

- Declare tokens and literals (one-symbol tokens):

```
tokens = [ 'INT' ]
literals = ['+','-','(',')','^','x']
```

- For each token, declare a "t_"-function: def t_INT(t):
r'\d+'
try:
t.value = int(t.value)
except ValueError:

$$
\begin{aligned}
& \text { print "Too large!", t.value } \\
& \text { t.value }=0
\end{aligned}
$$

return t

PLY Code for Lexical Analysis

- r ' $\backslash d+$ ' is a regular expression for sequences of decimal numbers.

PLY Code for Lexical Analysis

- r ' $\backslash d+$ ' is a regular expression for sequences of decimal numbers.
- Another example: regular expression for names (identifiers)

$$
\text { t_NAME } \quad=r^{\prime}\left[a-z A-Z_{-}\right]\left[a-z A-Z 0-9 _\right] *^{\prime}
$$

PLY Code for Lexical Analysis

- r ' $\backslash d+$ ' is a regular expression for sequences of decimal numbers.
- Another example: regular expression for names (identifiers)
t_NAME = r'[a-zA-Z_][a-zA-Z0-9_]*'
- Finally, build the lexer:
import ply.lex as lex
lex.lex()

PLY Code for Parsing

- Each rule of the grammar is implemented as a "p_"-function: def polymult(p,q) :

$$
r=[]
$$

for i in xrange(len(p)) : for j in xrange(len(q)) : safeadd(r,i+j,p[i]*q[j])
return r
def p_tm_mult(p):
"tm : tm '(' expr ')'"
$\mathrm{p}[0]=\operatorname{polymult}(\mathrm{p}[1], \mathrm{p}[3])$

PLY Code for Parsing

def p_tm_mult(p):
"tm : tm '(' expr ')'" $\mathrm{p}[0]=\operatorname{polymult}(\mathrm{p}[1], \mathrm{p}[3])$

PLY Code for Parsing

def p_tm_mult(p):
"tm : tm '(' expr ')'"
$p[0]=\operatorname{polymult}(p[1], p[3])$

- A"p_"-function generates an object p[0], using $\mathrm{p}[1], \mathrm{p}[2], \ldots$, which are obtained from the lexer or recursively from parsing.

PLY Code for Parsing

- Finally, build the parser: import ply.yacc as yacc yacc.yacc()

PLY Code for Parsing

- Finally, build the parser: import ply.yacc as yacc yacc.yacc()
- The code of PLY examples is available on the course's webpage:
http://www.mi-ras.ru/~sk/lehre/dm_hse2019/

PLY Code for Parsing

- Finally, build the parser: import ply.yacc as yacc yacc.yacc()
- The code of PLY examples is available on the course's webpage: http://www.mi-ras.ru/~sk/lehre/dm_hse2019/
- For priorities, see another example available on the webpage: calculator.

HW \# 1: Practice in Boolean Logic

Choose one:

1. Given a Boolean formula, constructed from variables using / (conjunction), \/ (disjunction), -> (implication), and ~ (negation), translate it into Conjunctive Normal Form and into Disjunctive Normal Form.
2. Given a Boolean formula in 2-CNF, use the resolution method to determine whether it is satisfiable. Clauses of the 2-CNF can be of one of the two forms: $\alpha \backslash / \beta$ or $\alpha \rightarrow \beta$, where α and β are literals (p or $\sim \mathrm{p}$, where p is a variable). The CNF is presented in the usual notation, for example:

$$
(p->q) / \backslash(\sim r \backslash / s) / \backslash(\sim q->p)
$$

HW \# 1: Practice in Boolean Logic

Choose one:

1. Given a Boolean formula, constructed from variables using / (conjunction), \/ (disjunction), -> (implication), and ~ (negation), translate it into Conjunctive Normal Form and into Disjunctive Normal Form.
2. Given a Boolean formula in 2-CNF, use the resolution method to determine whether it is satisfiable. Clauses of the 2-CNF can be of one of the two forms: $\alpha \backslash / \beta$ or $\alpha \rightarrow \beta$, where α and β are literals (p or $\sim \mathrm{p}$, where p is a variable). The CNF is presented in the usual notation, for example:

$$
(p->q) / \backslash(\sim r \backslash / s) / \backslash(\sim q->p)
$$

Tasks available at the course's webpage.

Good luck!

