P \& NP

Stepan Kuznetsov

Discrete Math Bridging Course, HSE University

The P Class

- Now we discuss only decision problems: that is, algorithmic questions with a "yes/no" answer.

The P Class

- Now we discuss only decision problems: that is, algorithmic questions with a "yes/no" answer.
- For convenience, let the input data be a word over an alphabet: $x \in \Sigma^{*}$.

The P Class

- Now we discuss only decision problems: that is, algorithmic questions with a "yes/no" answer.
- For convenience, let the input data be a word over an alphabet: $x \in \Sigma^{*}$.
- The size of input, $|x|$ is the length of x in symbols.

The P Class

- Now we discuss only decision problems: that is, algorithmic questions with a "yes/no" answer.
- For convenience, let the input data be a word over an alphabet: $x \in \Sigma^{*}$.
- The size of input, $|x|$ is the length of x in symbols.
- A decision problem is in the P class, if there exists an algorithm for solving it, whose worst case running time is bounded by $p(|x|)$.

The NP Class

- There are several equivalent definitions of the NP class.

The NP Class

- There are several equivalent definitions of the NP class.
- Def. 1: non-deterministic computations.

The NP Class

- There are several equivalent definitions of the NP class.
- Def. 1: non-deterministic computations.
- The Turing machine may branch:

$$
\begin{aligned}
& (p, a) \rightarrow\left(q_{1}, b_{1}, D_{1}\right) \\
& (p, a) \rightarrow\left(q_{2}, b_{2}, D_{2}\right)
\end{aligned}
$$

The NP Class

- There are several equivalent definitions of the NP class.
- Def. 1: non-deterministic computations.
- The Turing machine may branch:

$$
\begin{aligned}
& (p, a) \rightarrow\left(q_{1}, b_{1}, D_{1}\right) \\
& (p, a) \rightarrow\left(q_{2}, b_{2}, D_{2}\right)
\end{aligned}
$$

- Angelic choice: if at least one execution trajectory yields "yes," then the answer is "yes."

The NP Class

- There are several equivalent definitions of the NP class.
- Def. 1: non-deterministic computations.
- The Turing machine may branch:

$$
\begin{aligned}
& (p, a) \rightarrow\left(q_{1}, b_{1}, D_{1}\right) \\
& (p, a) \rightarrow\left(q_{2}, b_{2}, D_{2}\right)
\end{aligned}
$$

- Angelic choice: if at least one execution trajectory yields "yes," then the answer is "yes."
- One can implement non-deterministic guess (say, guess the satisfying assignment for a 3-CNF or guess a Hamiltonian cycle in a graph).

The NP Class

- Def. 2: hints.

The NP Class

- Def. 2: hints.
- Denote the decision problem by $A(x)$.

The NP Class

- Def. 2: hints.
- Denote the decision problem by $A(x)$.
- $A(x)=1 \Leftrightarrow \exists y(|y|<q(|x|) \& R(x, y)=1)$, where $R \in P$.

The NP Class

- Def. 2: hints.
- Denote the decision problem by $A(x)$.
- $A(x)=1 \Leftrightarrow \exists y(|y|<q(|x|) \& R(x, y)=1)$, where $R \in P$.
- y is a hint, given by someone to help us solve the problem.

The NP Class

- Def. 2: hints.
- Denote the decision problem by $A(x)$.
- $A(x)=1 \Leftrightarrow \exists y(|y|<q(|x|) \& R(x, y)=1)$, where $R \in P$.
- y is a hint, given by someone to help us solve the problem.
- Examples of y : the satisfying assignment; the Hamiltonian cycle; ...

The NP Class

- Equivalence of definitions:

The NP Class

- Equivalence of definitions:
- $2 \Rightarrow 1$: the hint can be guessed non-deterministically.

The NP Class

- Equivalence of definitions:
- $2 \Rightarrow 1$: the hint can be guessed non-deterministically.
- $1 \Rightarrow 2$: one can suppose that branching is binary. Then the hint is just the sequence of choices to be made.

The NP Class

- Equivalence of definitions:
- $2 \Rightarrow 1$: the hint can be guessed non-deterministically.
- $1 \Rightarrow 2$: one can suppose that branching is binary. Then the hint is just the sequence of choices to be made.

NP-Completeness

- Trivially, $\mathrm{P} \subseteq$ NP.

NP-Completeness

- Trivially, P \subseteq NP.
- Nobody knows, whether this inclusion is strict: say, whether 3-SAT \in P.

NP-Completeness

- Trivially, P \subseteq NP.
- Nobody knows, whether this inclusion is strict: say, whether 3-SAT \in P.
- As an ersatz, the theory of NP-completeness was invented.

NP-Completeness

- Trivially, P \subseteq NP.
- Nobody knows, whether this inclusion is strict: say, whether 3-SAT \in P.
- As an ersatz, the theory of NP-completeness was invented.
- Informally, NP-complete problems are the hardest possible problems in NP.

NP-Completeness

- Trivially, P \subseteq NP.
- Nobody knows, whether this inclusion is strict: say, whether 3-SAT $\in P$.
- As an ersatz, the theory of NP-completeness was invented.
- Informally, NP-complete problems are the hardest possible problems in NP.
- In particular, if an NP-complete problem is solvable in poly time, then $P=N P$.

NP-Completeness

- Trivially, P \subseteq NP.
- Nobody knows, whether this inclusion is strict: say, whether 3-SAT \in P.
- As an ersatz, the theory of NP-completeness was invented.
- Informally, NP-complete problems are the hardest possible problems in NP.
- In particular, if an NP-complete problem is solvable in poly time, then $P=N P$.
- Contraposition: if $P \neq N P$ (which highly likely), then any NP-complete problem is not in P .

NP-Completeness

- m-reduction (Carp reduction): A is
reducible to $B\left(A \leq_{m}^{P} B\right)$, if there exists a polytime computable function $f: \Sigma^{*} \rightarrow \Sigma^{*}$, such that $A(x)=1 \Longleftrightarrow B(f(x))=1$.
- The idea of reduction: if we can solve B, we can also solve A : $A(x)=B(f(x))$.
- A problem B is NP-hard if $A \leq_{m}^{P} B$ for any $A \in \mathrm{NP}$.
- B is NP-complete if $B \in N P$ and B is NP-hard.

Complexity Picture

(if $P \neq N P$)

Backwards Reduction

- Proving that a problem is NP-complete gives an evidence that it is hard (probably not polytime solvable).

Backwards Reduction

- Proving that a problem is NP-complete gives an evidence that it is hard (probably not polytime solvable).
- The common method of proving NP-hardness is backwards reduction.

Backwards Reduction

- Proving that a problem is NP-complete gives an evidence that it is hard (probably not polytime solvable).
- The common method of proving NP-hardness is backwards reduction.
- Suppose we know A to be already NP-hard.

Backwards Reduction

- Proving that a problem is NP-complete gives an evidence that it is hard (probably not polytime solvable).
- The common method of proving NP-hardness is backwards reduction.
- Suppose we know A to be already NP-hard.
- In order to prove NP-hardness of a problem B, we reduce the old problem A to B.

Backwards Reduction

- Proving that a problem is NP-complete gives an evidence that it is hard (probably not polytime solvable).
- The common method of proving NP-hardness is backwards reduction.
- Suppose we know A to be already NP-hard.
- In order to prove NP-hardness of a problem B, we reduce the old problem A to B.
- But how to bootstrap and obtain the first example of an NP-complete problem?

Cook - Levin Theorem

Theorem

SAT is NP-complete.

Cook - Levin Theorem

Proof sketch.

- Suppose $A \in$ NP, let us show $A \leq_{m}^{P}$ SAT.
- We encode each configuration of the Turing machine for A as a binary word:

$0^{m} \quad a_{1} \quad \ldots \quad 0^{m} \quad a_{i-1} \quad q \quad a_{i} \quad 0^{m} \quad a_{i+1} \quad \ldots$

Cook - Levin Theorem

- The sequence of configurations (protocol) of A on input x is encoded by a binary matrix $\left(b_{i j}\right)$ of size $(m \cdot p(|x|)) \times p(|x|)$.

Cook - Levin Theorem

- The sequence of configurations (protocol) of A on input x is encoded by a binary matrix $\left(b_{i j}\right)$ of size $(m \cdot p(|x|)) \times p(|x|)$.
- Next, we construct a formula φ_{x} with variables b_{00}, b_{01}, \ldots which expresses the fact that this matrix represents a correct protocol of a successful execution.

Cook - Levin Theorem

φ_{x} is a conjunction of the following claims:

1. the first row represents the configuration with x on the tape, the machine observing its first letter;
2. each next row is obtained from the previous one by one of the rules of the machine;
3. the last row includes state q_{F} and the answer "yes" (1).

Cook - Levin Theorem

φ_{x} is a conjunction of the following claims:

1. the first row represents the configuration with x on the tape, the machine observing its first letter;
2. each next row is obtained from the previous one by one of the rules of the machine;
3. the last row includes state q_{F} and the answer "yes" (1).

This is all expressible as Boolean formulae.

Cook - Levin Theorem

- The reducing function is $f: x \mapsto \varphi_{x}$.
- $A(x)=1 \Leftrightarrow \varphi_{x}$ is satisfiable.
- Thus, $A \leq_{m}^{P}$ SAT.
- Since A was taken arbitrarily, we get NP-hardness of SAT.
- On the other hand, SAT is in NP, so it is NP-complete.

NP-completeness of 3-SAT

- 3-SAT is a special version of SAT, where only 3-CNFs are allowed.
- Trivially, 3-SAT \leq_{m}^{P} SAT... but we need the opposite reduction!
- Let us show that SAT $\leq_{m}^{P} 3$-SAT.

Tseitin's Transformations

Theorem

For any Boolean formula φ, there exists an equisatisfiable 3-CNF ψ of polynomial size.

- Equisatisfiability means that ψ is satisfiable iff $s o$ is φ.

Tseitin's Transformations

Theorem

For any Boolean formula φ, there exists an equisatisfiable 3-CNF ψ of polynomial size.

- Equisatisfiability means that ψ is satisfiable iff $s o$ is φ.
- Constructing an equivalent 3-CNF of polynomial size is not always possible: even translation to CNF can lead to exponential blowup.

Tseitin's Transformations

- Tseitin's transformations look like translation into 3-address (Assembler-like) code:
$(a+b) *(c+d)$ is translated to
"add $a b t_{1}$; add $c d t_{2}$; mul $t_{1} t_{2} r$ "

Tseitin's Transformations

- Tseitin's transformations look like translation into 3-address (Assembler-like) code:
$(a+b) *(c+d)$ is translated to "add $a b t_{1}$; add $c d t_{2}$; mul $t_{1} t_{2} r$ "
- For each subformula we introduce a new variable and write the corresponding equivalences.

Tseitin's Transformations

Example: $(p \rightarrow q) \vee(q \rightarrow(p \rightarrow r))$

Tseitin's Transformations

Example: $(p \rightarrow q) \vee(q \rightarrow(p \rightarrow r))$

$$
\begin{aligned}
& \left(t_{1} \leftrightarrow(p \rightarrow q)\right) \wedge \\
& \left(t_{2} \leftrightarrow(p \rightarrow r)\right) \wedge \\
& \left(t_{3} \leftrightarrow\left(q \rightarrow t_{2}\right)\right) \wedge \\
& \left(t_{4} \leftrightarrow\left(t_{1} \vee t_{3}\right)\right) \wedge \\
& t_{4}
\end{aligned}
$$

Tseitin's Transformations

Transform into 3-CNF by the following table:

$$
\begin{array}{l|l}
t_{k} \leftrightarrow\left(t_{i} \wedge t_{j}\right) & \left(\neg t_{i} \vee \neg t_{j} \vee t_{k}\right) \wedge\left(t_{i} \vee \neg t_{k}\right) \wedge\left(t_{j} \vee \neg t_{k}\right) \\
t_{k} \leftrightarrow\left(t_{i} \vee t_{j}\right) & \left(t_{i} \vee t_{j} \vee \neg t_{k}\right) \wedge\left(\neg t_{i} \vee t_{k}\right) \wedge\left(\neg t_{j} \vee t_{k}\right) \\
t_{k} \leftrightarrow\left(t_{i} \rightarrow t_{j}\right) & \left(\neg t_{i} \vee t_{j} \vee \neg t_{k}\right) \wedge\left(t_{i} \vee t_{k}\right) \wedge\left(\neg t_{j} \vee t_{k}\right) \\
t_{k} \leftrightarrow \neg t_{i} & \left(t_{i} \vee t_{k}\right) \wedge\left(\neg t_{i} \vee \neg t_{k}\right)
\end{array}
$$

Tseitin's Transformations

Transform into 3-CNF by the following table:

$$
\begin{array}{l|l}
t_{k} \leftrightarrow\left(t_{i} \wedge t_{j}\right) & \left(\neg t_{i} \vee \neg t_{j} \vee t_{k}\right) \wedge\left(t_{i} \vee \neg t_{k}\right) \wedge\left(t_{j} \vee \neg t_{k}\right) \\
t_{k} \leftrightarrow\left(t_{i} \vee t_{j}\right) & \left(t_{i} \vee t_{j} \vee \neg t_{k}\right) \wedge\left(\neg t_{i} \vee t_{k}\right) \wedge\left(\neg t_{j} \vee t_{k}\right) \\
t_{k} \leftrightarrow\left(t_{i} \rightarrow t_{j}\right) & \left(\neg t_{i} \vee t_{j} \vee \neg t_{k}\right) \wedge\left(t_{i} \vee t_{k}\right) \wedge\left(\neg t_{j} \vee t_{k}\right) \\
t_{k} \leftrightarrow \neg t_{i} & \begin{array}{l}
\left(t_{i} \vee t_{k}\right) \wedge\left(\neg t_{i} \vee \neg t_{k}\right)
\end{array}
\end{array}
$$

For our example, we get:

$$
\begin{aligned}
& \left(\neg p \vee q \vee \neg t_{1}\right) \wedge\left(p \vee t_{1}\right) \wedge\left(\neg q \vee t_{1}\right) \wedge \\
& \left(\neg p \vee r \vee \neg t_{2}\right) \wedge\left(p \vee t_{2}\right) \wedge\left(\neg r \vee t_{2}\right) \wedge \\
& \left(\neg q \vee t_{2} \vee \neg t_{3}\right) \wedge\left(q \vee t_{3}\right) \wedge\left(\neg t_{2} \vee t_{3}\right) \wedge \\
& \left(t_{1} \vee t_{3} \vee \neg t_{4}\right) \wedge\left(\neg t_{1} \vee t_{4}\right) \wedge\left(\neg t_{3} \vee t_{4}\right) \wedge t_{4}
\end{aligned}
$$

Beyond Decision Problems

- An NP decision problem is the question whether there exists a witness y such that $R(x, y)=1$.

Beyond Decision Problems

- An NP decision problem is the question whether there exists a witness y such that $R(x, y)=1$.
- E.g., a satisfying assignment for φ.

Beyond Decision Problems

- An NP decision problem is the question whether there exists a witness y such that $R(x, y)=1$.
- E.g., a satisfying assignment for φ.
- Search problem: yield a witness or say "no."

Beyond Decision Problems

- An NP decision problem is the question whether there exists a witness y such that $R(x, y)=1$.
- E.g., a satisfying assignment for φ.
- Search problem: yield a witness or say "no."
- Counting problem (the \#P class): yield the number of witnesses.

Beyond Decision Problems

- An NP decision problem is the question whether there exists a witness y such that $R(x, y)=1$.
- E.g., a satisfying assignment for φ.
- Search problem: yield a witness or say "no."
- Counting problem (the \#P class): yield the number of witnesses.
- Finally, we could ask for all witnesses.

Beyond Decision Problems

- The problem of yielding all witnesses could be unconditionally non-polynomial, since the answer could be exponential.

Beyond Decision Problems

- The problem of yielding all witnesses could be unconditionally non-polynomial, since the answer could be exponential.
- If $P=N P$, then any search problem is solvable in poly time.

Beyond Decision Problems

- The problem of yielding all witnesses could be unconditionally non-polynomial, since the answer could be exponential.
- If $\mathrm{P}=\mathrm{NP}$, then any search problem is solvable in poly time.
- Dichotomy: take $\varphi\left[p_{1}:=0\right]$ and $\varphi\left[p_{1}:=1\right]$, find out which is satisfiable, then do the same for p_{2}, p_{3}, \ldots.

Beyond Decision Problems

- The problem of yielding all witnesses could be unconditionally non-polynomial, since the answer could be exponential.
- If $P=N P$, then any search problem is solvable in poly time.
- Dichotomy: take $\varphi\left[p_{1}:=0\right]$ and $\varphi\left[p_{1}:=1\right]$, find out which is satisfiable, then do the same for p_{2}, p_{3}, \ldots.
- This gives a poly-time algorithm for the search problem for 2-CNF.

Beyond Decision Problems

- The problem of yielding all witnesses could be unconditionally non-polynomial, since the answer could be exponential.
- If $P=N P$, then any search problem is solvable in poly time.
- Dichotomy: take $\varphi\left[p_{1}:=0\right]$ and $\varphi\left[p_{1}:=1\right]$, find out which is satisfiable, then do the same for p_{2}, p_{3}, \ldots.
- This gives a poly-time algorithm for the search problem for 2-CNF.
- The counting problem could be harder than the decision one (example: DNF-SAT).

