P & NP

Stepan Kuznetsov

Discrete Math Bridging Course, HSE University

The P Class

- Now we discuss only decision problems:
that is, algorithmic questions with a
“yes/no” answer.

The P Class

- Now we discuss only decision problems:
that is, algorithmic questions with a
“yes/no” answer.

- For convenience, let the input data be a
word over an alphabet: z € ¥*.

The P Class

- Now we discuss only decision problems:
that is, algorithmic questions with a
“yes/no” answer.

- For convenience, let the input data be a
word over an alphabet: z € ¥*.

- The size of input, |z| is the length of x in
symbols.

The P Class

- Now we discuss only decision problems:
that is, algorithmic questions with a
“yes/no” answer.

- For convenience, let the input data be a
word over an alphabet: z € ¥*.

- The size of input, |z| is the length of x in
symbols.

- A decision problem is in the P class, if
there exists an algorithm for solving it,
whose worst case running time is bounded

by p(|z|).

The NP Class

- There are several equivalent definitions of
the NP class.

The NP Class

- There are several equivalent definitions of

the NP class.
- Def. 1: non-deterministic computations.

The NP Class

- There are several equivalent definitions of

the NP class.
- Def. 1: non-deterministic computations.
- The Turing machine may branch:

(paa> - (Q17b1aD1)
(paa’> - (q27b27 D2)

The NP Class

- There are several equivalent definitions of

the NP class.
- Def. 1: non-deterministic computations.
- The Turing machine may branch:

(paa‘> - (Q17b1aD1)
(paa'> - (q27b27 D2)

- Angelic choice: if at least one execution
trajectory yields “yes,” then the answer is “yes.”

The NP Class

- There are several equivalent definitions of
the NP class.

- Def. 1: non-deterministic computations.
- The Turing machine may branch:

(paa‘> — (Q17b1a Dl)
(p,a) = (qq, by, Dy)

- Angelic choice: if at least one execution
trajectory yields “yes,” then the answer is “yes.”

- One can implement non-deterministic guess
(say, guess the satisfying assignment for a
3-CNF or guess a Hamiltonian cycle in a graph).

The NP Class

- Def. 2: hints.

The NP Class

- Def. 2: hints.
- Denote the decision problem by A(x).

The NP Class

- Def. 2: hints.
- Denote the decision problem by A(x).
©Az) =1 <= Jy(lyl <q(z]) & Rz, y) = 1),
where R € P.

The NP Class

- Def. 2: hints.
- Denote the decision problem by A(x).
CAlr) =1 <= Fy(lyl < qllz]) & R(z,y) = 1),
where R € P.
- y s a hint, given by someone to help us solve

the problem.

The NP Class

- Def. 2: hints.

- Denote the decision problem by A(x).

©Alz) =1 <= Fy(lyl < q(lz]) & R(z,y) = 1),
where R € P.

- y s a hint, given by someone to help us solve
the problem.

- Examples of y: the satisfying assignment; the
Hamiltonian cycle; ...

The NP Class

- Equivalence of definitions:

The NP Class

- Equivalence of definitions:
- 2 = 1: the hint can be guessed
non-deterministically.

The NP Class

Equwalence of definitions:
2 = 1: the hint can be guessed
non-deterministically.
- 1 = 2: one can suppose that branching is
binary. Then the hint is just the sequence of
choices to be made.

The NP Class

Equamnceofdeﬁnnmns
2 = 1: the hint can be guessed
non-deterministically.
- 1 = 2: one can suppose that branching is
binary. Then the hint is just the sequence of
choices to be made.

T/L
40

a::OXOO

NP-Completeness

- Trivially, P C NP.

NP-Completeness

- Trivially, P C NP.

- Nobody knows, whether this inclusion is
strict: say, whether 3-SAT € P.

NP-Completeness

- Trivially, P C NP.

- Nobody knows, whether this inclusion is
strict: say, whether 3-SAT € P.

- As an ersatz, the theory of
NP-completeness was invented.

NP-Completeness

- Trivially, P C NP.

- Nobody knows, whether this inclusion is
strict: say, whether 3-SAT € P.
- As an ersatz, the theory of

NP-completeness was invented.

- Informally, NP-complete problems are the
hardest possible problems in NP.

NP-Completeness

- Trivially, P C NP.

- Nobody knows, whether this inclusion is
strict: say, whether 3-SAT € P.

- As an ersatz, the theory of
NP-completeness was invented.

- Informally, NP-complete problems are the
hardest possible problems in NP.
- In particular, if an NP-complete problem is
solvable in poly time, then P = NP.

NP-Completeness

- Trivially, P C NP.

- Nobody knows, whether this inclusion is
strict: say, whether 3-SAT € P.

- As an ersatz, the theory of
NP-completeness was invented.

- Informally, NP-complete problems are the
hardest possible problems in NP.

- In particular, if an NP-complete problem is
solvable in poly time, then P = NP.

- Contraposition: if P # NP (which highly likely),
then any NP-complete problem is not in P.

NP-Completeness

- m-reduction (Carp reduction): A4 is
reducible to B (A <P’ B), if there exists a
polytime computable function f: ¥* — ¥*,
such that|A(zx) =1 < B(f(x)) =1.

- The idea of reduction: if we can solve B, we
can also solve A: A(z) = B(f(x)).

- A problem B is NP-hard if A <P B for any
A e NP.

- Bis NP-complete if B € NP and B is
NP-hard.

Complexity Picture
(if P £ NP)

Backwards Reduction

- Proving that a problem is NP-complete
gives an evidence that it is hard (probably
not polytime solvable).

Backwards Reduction

- Proving that a problem is NP-complete
gives an evidence that it is hard (probably
not polytime solvable).

- The common method of proving
NP-hardness is backwards reduction.

Backwards Reduction

- Proving that a problem is NP-complete
gives an evidence that it is hard (probably
not polytime solvable).

- The common method of proving
NP-hardness is backwards reduction.

- Suppose we know A to be already NP-hard.

Backwards Reduction

- Proving that a problem is NP-complete
gives an evidence that it is hard (probably
not polytime solvable).

- The common method of proving
NP-hardness is backwards reduction.

- Suppose we know A to be already NP-hard.
- In order to prove NP-hardness of a problem B,
we reduce the old problem A to B.

Backwards Reduction

- Proving that a problem is NP-complete
gives an evidence that it is hard (probably
not polytime solvable).

- The common method of proving
NP-hardness is backwards reduction.

- Suppose we know A to be already NP-hard.
- In order to prove NP-hardness of a problem B,
we reduce the old problem A to B.
- But how to bootstrap and obtain the first

example of an NP-complete problem?

Cook — Levin Theorem

SAT is NP-complete.

Cook - Levin Theorem
Proof sketch.

- Suppose A € NP, let us show A <P SAT.
- We encode each configuration of the Turing
machine for A as a binary word:

Cook - Levin Theorem

- The sequence of configurations (protocol)
of A on input z is encoded by a binary
matrix (b;;) of size (m - p(|z|)) x p(|z]).

Cook - Levin Theorem

- The sequence of configurations (protocol)
of A on input z is encoded by a binary
matrix (b;;) of size (m - p(|z|)) x p(|z]).

- Next, we construct a formula ¢, with
variables by, byy, ... Which expresses the
fact that this matrix represents a correct
protocol of a successful execution.

Cook - Levin Theorem

¢, 1S a conjunction of the following claims:

1. the first row represents the configuration
with 2 on the tape, the machine observing
Its first letter;

2. each next row is obtained from the
previous one by one of the rules of the
machine;

3. the last row includes state ¢ and the
answer “yes” (1).

Cook - Levin Theorem

¢, 1S a conjunction of the following claims:

1. the first row represents the configuration
with 2 on the tape, the machine observing
Its first letter;

2. each next row is obtained from the
previous one by one of the rules of the
machine;

3. the last row includes state ¢ and the
answer “yes” (1).

This is all expressible as Boolean formulae.

Cook - Levin Theorem

- The reducing function is f: x ¢,.

- A(r) =1 < ¢, Is satisfiable.

- Thus, A <P’ SAT.

- Since A was taken arbitrarily, we get
NP-hardness of SAT.

- On the other hand, SAT is in NP, so it is
NP-complete.

NP-completeness of 3-SAT

- 3-SAT is a special version of SAT, where only
3-CNFs are allowed.

- Trivially, 3-SAT <P SAT... but we need the
opposite reduction!

- Let us show that SAT < 3-SAT.

Tseitin’s Transformations

Theorem

For any Boolean formula ¢, there exists an
equisatisfiable 3-CNF +) of polynomial size.

- Equisatisfiability means that « is satisfiable
Iff so is .

Tseitin’s Transformations

Theorem
For any Boolean formula ¢, there exists an
equisatisfiable 3-CNF +) of polynomial size.

- Equisatisfiability means that « is satisfiable
Iff so is .

- Constructing an equivalent 3-CNF of
polynomial size is not always possible:
even translation to CNF can lead to
exponential blowup.

Tseitin’s Transformations

- Tseitin's transformations look like
translation into 3-address (Assembler-like)
code:

(a+b)* (¢ +d) is translated to
“‘add a b ty; add e d ty; mul ty ty 7"

Tseitin’s Transformations

- Tseitin’s transformations look like
translation into 3-address (Assembler-like)
code:

(a+b)* (¢ +d) is translated to
“‘add a b ty; add e d ty; mul ty ty 7"

- For each subformula we introduce a new
variable and write the corresponding
equivalences.

Tseitin’s Transformations

Example: (p = q) V(g — (p = 1))

Tseitin’s Transformations

Example: (p = q) V(g — (p = 1))

(t; < (= q) A
(ty > (p—= 1)) A
(t3 <> (@ = t3)) A
(ty <> (t1 ViEg) A

Tseitin’s Transformations

Transform into 3-CNF by the following table:

t < (G At;) | (Tt Vot Vit) At V—ty) AtV —ty)
ty < (8, Vi) | (8, ViE;Vot) A=t Vi) A=t Vi)
tp < (t; —t;) | (Zt, Vi, Vot At Vi) A (=t Vi)
t,, < i, (t; Vi) A(=t; V—ty,)

Tseitin’s Transformations

Transform into 3-CNF by the following table:

t < (G At;) | (Tt Vot Vit) At V—ty) AtV —ty)
ty < (t; Vi) | (t; Vi \/ﬁt)/\(ﬁti\/t) (=t Vi)
ty < (t; = t;) | (=t \/t vﬁt)A(tin) (—t; Vi)
by <t (

2

For our example, we get:
(mpVaqV—t) Ap Vi) A(mg Vi) A
(mp V71V —ty) A(pVity) A(—rViy) A
(ﬁq Vv t2 —tg) A (g Vig) A (Tty Vitg) A

Beyond Decision Problems

- An NP decision problem is the question
whether there exists a witness y such that
R(z,y) = 1.

Beyond Decision Problems

- An NP decision problem is the question
whether there exists a witness y such that
R(z,y) = 1.

- E.g, a satisfying assignment for .

Beyond Decision Problems

- An NP decision problem is the question
whether there exists a witness y such that
R(z,y) = 1.

- E.g, a satisfying assignment for .

- Search problem: yield a witness or say “no.”

Beyond Decision Problems

- An NP decision problem is the question
whether there exists a witness y such that
R(z,y) = 1.

- E.g, a satisfying assignment for .
- Search problem: yield a witness or say “no.”

- Counting problem (the #P class): yield the
number of witnesses.

Beyond Decision Problems

- An NP decision problem is the question
whether there exists a witness y such that
R(z,y) = 1.

- E.g, a satisfying assignment for .
- Search problem: yield a witness or say “no.”

- Counting problem (the #P class): yield the
number of witnesses.

- Finally, we could ask for all witnesses.

Beyond Decision Problems

- The problem of yielding all witnesses could
be unconditionally non-polynomial, since
the answer could be exponential.

Beyond Decision Problems

- The problem of yielding all witnesses could
be unconditionally non-polynomial, since

the answer could be exponential.

- If P = NP, then any search problem is
solvable in poly time.

Beyond Decision Problems

- The problem of yielding all witnesses could
be unconditionally non-polynomial, since

the answer could be exponential.
- If P = NP, then any search problem is
solvable in poly time.
- Dichotomy: take ¢[p, := 0] and ¢[p, = 1],
find out which is satisfiable, then do the same
for py, ps, ...

Beyond Decision Problems

- The problem of yielding all witnesses could
be unconditionally non-polynomial, since

the answer could be exponential.
- If P = NP, then any search problem is
solvable in poly time.

- Dichotomy: take ¢[p, := 0] and ¢[p, = 1],
find out which is satisfiable, then do the same
for py, ps, ...

- This gives a poly-time algorithm for the search
problem for 2-CNF.

Beyond Decision Problems

- The problem of yielding all witnesses could
be unconditionally non-polynomial, since
the answer could be exponential.

- If P = NP, then any search problem is
solvable in poly time.

- Dichotomy: take ¢[p, := 0] and ¢[p, = 1],
find out which is satisfiable, then do the same

for py, ps, ...
- This gives a poly-time algorithm for the search

problem for 2-CNF.
- The counting problem could be harder
than the decision one (example: DNF-SAT).

