
P & NP

Stepan Kuznetsov

Discrete Math Bridging Course, HSE University

The P Class
• Now we discuss only decision problems:
that is, algorithmic questions with a
“yes/no” answer.

• For convenience, let the input data be a
word over an alphabet: 𝑥 ∈ Σ∗.

• The size of input, |𝑥| is the length of 𝑥 in
symbols.

• A decision problem is in the P class, if
there exists an algorithm for solving it,
whose worst case running time is bounded
by 𝑝(|𝑥|).

The P Class
• Now we discuss only decision problems:
that is, algorithmic questions with a
“yes/no” answer.

• For convenience, let the input data be a
word over an alphabet: 𝑥 ∈ Σ∗.

• The size of input, |𝑥| is the length of 𝑥 in
symbols.

• A decision problem is in the P class, if
there exists an algorithm for solving it,
whose worst case running time is bounded
by 𝑝(|𝑥|).

The P Class
• Now we discuss only decision problems:
that is, algorithmic questions with a
“yes/no” answer.

• For convenience, let the input data be a
word over an alphabet: 𝑥 ∈ Σ∗.

• The size of input, |𝑥| is the length of 𝑥 in
symbols.

• A decision problem is in the P class, if
there exists an algorithm for solving it,
whose worst case running time is bounded
by 𝑝(|𝑥|).

The P Class
• Now we discuss only decision problems:
that is, algorithmic questions with a
“yes/no” answer.

• For convenience, let the input data be a
word over an alphabet: 𝑥 ∈ Σ∗.

• The size of input, |𝑥| is the length of 𝑥 in
symbols.

• A decision problem is in the P class, if
there exists an algorithm for solving it,
whose worst case running time is bounded
by 𝑝(|𝑥|).

The NP Class
• There are several equivalent definitions of
the NP class.

• Def. 1: non-deterministic computations.

• The Turing machine may branch:

(𝑝, 𝑎) → (𝑞1, 𝑏1, 𝐷1)
(𝑝, 𝑎) → (𝑞2, 𝑏2, 𝐷2)

• Angelic choice: if at least one execution
trajectory yields “yes,” then the answer is “yes.”

• One can implement non-deterministic guess
(say, guess the satisfying assignment for a
3-CNF or guess a Hamiltonian cycle in a graph).

The NP Class
• There are several equivalent definitions of
the NP class.

• Def. 1: non-deterministic computations.

• The Turing machine may branch:

(𝑝, 𝑎) → (𝑞1, 𝑏1, 𝐷1)
(𝑝, 𝑎) → (𝑞2, 𝑏2, 𝐷2)

• Angelic choice: if at least one execution
trajectory yields “yes,” then the answer is “yes.”

• One can implement non-deterministic guess
(say, guess the satisfying assignment for a
3-CNF or guess a Hamiltonian cycle in a graph).

The NP Class
• There are several equivalent definitions of
the NP class.

• Def. 1: non-deterministic computations.
• The Turing machine may branch:

(𝑝, 𝑎) → (𝑞1, 𝑏1, 𝐷1)
(𝑝, 𝑎) → (𝑞2, 𝑏2, 𝐷2)

• Angelic choice: if at least one execution
trajectory yields “yes,” then the answer is “yes.”

• One can implement non-deterministic guess
(say, guess the satisfying assignment for a
3-CNF or guess a Hamiltonian cycle in a graph).

The NP Class
• There are several equivalent definitions of
the NP class.

• Def. 1: non-deterministic computations.
• The Turing machine may branch:

(𝑝, 𝑎) → (𝑞1, 𝑏1, 𝐷1)
(𝑝, 𝑎) → (𝑞2, 𝑏2, 𝐷2)

• Angelic choice: if at least one execution
trajectory yields “yes,” then the answer is “yes.”

• One can implement non-deterministic guess
(say, guess the satisfying assignment for a
3-CNF or guess a Hamiltonian cycle in a graph).

The NP Class
• There are several equivalent definitions of
the NP class.

• Def. 1: non-deterministic computations.
• The Turing machine may branch:

(𝑝, 𝑎) → (𝑞1, 𝑏1, 𝐷1)
(𝑝, 𝑎) → (𝑞2, 𝑏2, 𝐷2)

• Angelic choice: if at least one execution
trajectory yields “yes,” then the answer is “yes.”

• One can implement non-deterministic guess
(say, guess the satisfying assignment for a
3-CNF or guess a Hamiltonian cycle in a graph).

The NP Class

• Def. 2: hints.

• Denote the decision problem by 𝐴(𝑥).
• 𝐴(𝑥) = 1 ⟺ ∃𝑦 (|𝑦| < 𝑞(|𝑥|) & 𝑅(𝑥, 𝑦) = 1),
where 𝑅 ∈ 𝑃 .

• 𝑦 is a hint, given by someone to help us solve
the problem.

• Examples of 𝑦: the satisfying assignment; the
Hamiltonian cycle; ...

The NP Class

• Def. 2: hints.
• Denote the decision problem by 𝐴(𝑥).

• 𝐴(𝑥) = 1 ⟺ ∃𝑦 (|𝑦| < 𝑞(|𝑥|) & 𝑅(𝑥, 𝑦) = 1),
where 𝑅 ∈ 𝑃 .

• 𝑦 is a hint, given by someone to help us solve
the problem.

• Examples of 𝑦: the satisfying assignment; the
Hamiltonian cycle; ...

The NP Class

• Def. 2: hints.
• Denote the decision problem by 𝐴(𝑥).
• 𝐴(𝑥) = 1 ⟺ ∃𝑦 (|𝑦| < 𝑞(|𝑥|) & 𝑅(𝑥, 𝑦) = 1),
where 𝑅 ∈ 𝑃 .

• 𝑦 is a hint, given by someone to help us solve
the problem.

• Examples of 𝑦: the satisfying assignment; the
Hamiltonian cycle; ...

The NP Class

• Def. 2: hints.
• Denote the decision problem by 𝐴(𝑥).
• 𝐴(𝑥) = 1 ⟺ ∃𝑦 (|𝑦| < 𝑞(|𝑥|) & 𝑅(𝑥, 𝑦) = 1),
where 𝑅 ∈ 𝑃 .

• 𝑦 is a hint, given by someone to help us solve
the problem.

• Examples of 𝑦: the satisfying assignment; the
Hamiltonian cycle; ...

The NP Class

• Def. 2: hints.
• Denote the decision problem by 𝐴(𝑥).
• 𝐴(𝑥) = 1 ⟺ ∃𝑦 (|𝑦| < 𝑞(|𝑥|) & 𝑅(𝑥, 𝑦) = 1),
where 𝑅 ∈ 𝑃 .

• 𝑦 is a hint, given by someone to help us solve
the problem.

• Examples of 𝑦: the satisfying assignment; the
Hamiltonian cycle; ...

The NP Class
• Equivalence of definitions:

• 2 ⇒ 1: the hint can be guessed
non-deterministically.

• 1 ⇒ 2: one can suppose that branching is
binary. Then the hint is just the sequence of
choices to be made.

The NP Class
• Equivalence of definitions:

• 2 ⇒ 1: the hint can be guessed
non-deterministically.

• 1 ⇒ 2: one can suppose that branching is
binary. Then the hint is just the sequence of
choices to be made.

The NP Class
• Equivalence of definitions:

• 2 ⇒ 1: the hint can be guessed
non-deterministically.

• 1 ⇒ 2: one can suppose that branching is
binary. Then the hint is just the sequence of
choices to be made.

The NP Class
• Equivalence of definitions:

• 2 ⇒ 1: the hint can be guessed
non-deterministically.

• 1 ⇒ 2: one can suppose that branching is
binary. Then the hint is just the sequence of
choices to be made.

NP-Completeness
• Trivially, P ⊆ NP.

• Nobody knows, whether this inclusion is
strict: say, whether 3-SAT ∈ P.

• As an ersatz, the theory of
NP-completeness was invented.

• Informally, NP-complete problems are the
hardest possible problems in NP.

• In particular, if an NP-complete problem is
solvable in poly time, then P = NP.

• Contraposition: if P ≠ NP (which highly likely),
then any NP-complete problem is not in P.

NP-Completeness
• Trivially, P ⊆ NP.
• Nobody knows, whether this inclusion is
strict: say, whether 3-SAT ∈ P.

• As an ersatz, the theory of
NP-completeness was invented.

• Informally, NP-complete problems are the
hardest possible problems in NP.

• In particular, if an NP-complete problem is
solvable in poly time, then P = NP.

• Contraposition: if P ≠ NP (which highly likely),
then any NP-complete problem is not in P.

NP-Completeness
• Trivially, P ⊆ NP.
• Nobody knows, whether this inclusion is
strict: say, whether 3-SAT ∈ P.

• As an ersatz, the theory of
NP-completeness was invented.

• Informally, NP-complete problems are the
hardest possible problems in NP.

• In particular, if an NP-complete problem is
solvable in poly time, then P = NP.

• Contraposition: if P ≠ NP (which highly likely),
then any NP-complete problem is not in P.

NP-Completeness
• Trivially, P ⊆ NP.
• Nobody knows, whether this inclusion is
strict: say, whether 3-SAT ∈ P.

• As an ersatz, the theory of
NP-completeness was invented.

• Informally, NP-complete problems are the
hardest possible problems in NP.

• In particular, if an NP-complete problem is
solvable in poly time, then P = NP.

• Contraposition: if P ≠ NP (which highly likely),
then any NP-complete problem is not in P.

NP-Completeness
• Trivially, P ⊆ NP.
• Nobody knows, whether this inclusion is
strict: say, whether 3-SAT ∈ P.

• As an ersatz, the theory of
NP-completeness was invented.

• Informally, NP-complete problems are the
hardest possible problems in NP.

• In particular, if an NP-complete problem is
solvable in poly time, then P = NP.

• Contraposition: if P ≠ NP (which highly likely),
then any NP-complete problem is not in P.

NP-Completeness
• Trivially, P ⊆ NP.
• Nobody knows, whether this inclusion is
strict: say, whether 3-SAT ∈ P.

• As an ersatz, the theory of
NP-completeness was invented.

• Informally, NP-complete problems are the
hardest possible problems in NP.

• In particular, if an NP-complete problem is
solvable in poly time, then P = NP.

• Contraposition: if P ≠ NP (which highly likely),
then any NP-complete problem is not in P.

NP-Completeness

• m-reduction (Carp reduction): 𝐴 is
reducible to 𝐵 (𝐴 ≤𝑃

𝑚 𝐵), if there exists a
polytime computable function 𝑓 ∶ Σ∗ → Σ∗,
such that 𝐴(𝑥) = 1 ⟺ 𝐵(𝑓(𝑥)) = 1.

• The idea of reduction: if we can solve 𝐵, we
can also solve 𝐴: 𝐴(𝑥) = 𝐵(𝑓(𝑥)).

• A problem 𝐵 is NP-hard if 𝐴 ≤𝑃
𝑚 𝐵 for any

𝐴 ∈ NP.
• 𝐵 is NP-complete if 𝐵 ∈ NP and 𝐵 is
NP-hard.

Complexity Picture
(if P ≠ NP)

Backwards Reduction

• Proving that a problem is NP-complete
gives an evidence that it is hard (probably
not polytime solvable).

• The common method of proving
NP-hardness is backwards reduction.

• Suppose we know 𝐴 to be already NP-hard.
• In order to prove NP-hardness of a problem 𝐵,
we reduce the old problem 𝐴 to 𝐵.

• But how to bootstrap and obtain the first
example of an NP-complete problem?

Backwards Reduction

• Proving that a problem is NP-complete
gives an evidence that it is hard (probably
not polytime solvable).

• The common method of proving
NP-hardness is backwards reduction.

• Suppose we know 𝐴 to be already NP-hard.
• In order to prove NP-hardness of a problem 𝐵,
we reduce the old problem 𝐴 to 𝐵.

• But how to bootstrap and obtain the first
example of an NP-complete problem?

Backwards Reduction

• Proving that a problem is NP-complete
gives an evidence that it is hard (probably
not polytime solvable).

• The common method of proving
NP-hardness is backwards reduction.

• Suppose we know 𝐴 to be already NP-hard.

• In order to prove NP-hardness of a problem 𝐵,
we reduce the old problem 𝐴 to 𝐵.

• But how to bootstrap and obtain the first
example of an NP-complete problem?

Backwards Reduction

• Proving that a problem is NP-complete
gives an evidence that it is hard (probably
not polytime solvable).

• The common method of proving
NP-hardness is backwards reduction.

• Suppose we know 𝐴 to be already NP-hard.
• In order to prove NP-hardness of a problem 𝐵,
we reduce the old problem 𝐴 to 𝐵.

• But how to bootstrap and obtain the first
example of an NP-complete problem?

Backwards Reduction

• Proving that a problem is NP-complete
gives an evidence that it is hard (probably
not polytime solvable).

• The common method of proving
NP-hardness is backwards reduction.

• Suppose we know 𝐴 to be already NP-hard.
• In order to prove NP-hardness of a problem 𝐵,
we reduce the old problem 𝐴 to 𝐵.

• But how to bootstrap and obtain the first
example of an NP-complete problem?

Cook – Levin Theorem

Theorem
SAT is NP-complete.

Cook – Levin Theorem
Proof sketch.

• Suppose 𝐴 ∈ NP, let us show 𝐴 ≤𝑃
𝑚 SAT.

• We encode each configuration of the Turing
machine for 𝐴 as a binary word:

… …𝑎𝑖𝑎𝑖−1 𝑎𝑖+1

𝑞

0𝑚 𝑎1 … 0𝑚 𝑎𝑖−1 𝑞 𝑎𝑖 0𝑚 𝑎𝑖+1 …

Cook – Levin Theorem

• The sequence of configurations (protocol)
of 𝐴 on input 𝑥 is encoded by a binary
matrix (𝑏𝑖𝑗) of size (𝑚 ⋅ 𝑝(|𝑥|)) × 𝑝(|𝑥|).

• Next, we construct a formula 𝜑𝑥 with
variables 𝑏00, 𝑏01, … which expresses the
fact that this matrix represents a correct
protocol of a successful execution.

Cook – Levin Theorem

• The sequence of configurations (protocol)
of 𝐴 on input 𝑥 is encoded by a binary
matrix (𝑏𝑖𝑗) of size (𝑚 ⋅ 𝑝(|𝑥|)) × 𝑝(|𝑥|).

• Next, we construct a formula 𝜑𝑥 with
variables 𝑏00, 𝑏01, … which expresses the
fact that this matrix represents a correct
protocol of a successful execution.

Cook – Levin Theorem
𝜑𝑥 is a conjunction of the following claims:

1. the first row represents the configuration
with 𝑥 on the tape, the machine observing
its first letter;

2. each next row is obtained from the
previous one by one of the rules of the
machine;

3. the last row includes state 𝑞𝐹 and the
answer “yes” (1).

This is all expressible as Boolean formulae.

Cook – Levin Theorem
𝜑𝑥 is a conjunction of the following claims:

1. the first row represents the configuration
with 𝑥 on the tape, the machine observing
its first letter;

2. each next row is obtained from the
previous one by one of the rules of the
machine;

3. the last row includes state 𝑞𝐹 and the
answer “yes” (1).

This is all expressible as Boolean formulae.

Cook – Levin Theorem

• The reducing function is 𝑓 ∶ 𝑥 ↦ 𝜑𝑥.
• 𝐴(𝑥) = 1 ⟺ 𝜑𝑥 is satisfiable.
• Thus, 𝐴 ≤𝑃

𝑚 SAT.
• Since 𝐴 was taken arbitrarily, we get
NP-hardness of SAT.

• On the other hand, SAT is in NP, so it is
NP-complete.

NP-completeness of 3-SAT

• 3-SAT is a special version of SAT, where only
3-CNFs are allowed.

• Trivially, 3-SAT ≤𝑃
𝑚 SAT... but we need the

opposite reduction!
• Let us show that SAT ≤𝑃

𝑚 3-SAT.

Tseitin’s Transformations
Theorem
For any Boolean formula 𝜑, there exists an
equisatisfiable 3-CNF 𝜓 of polynomial size.

• Equisatisfiability means that 𝜓 is satisfiable
iff so is 𝜑.

• Constructing an equivalent 3-CNF of
polynomial size is not always possible:
even translation to CNF can lead to
exponential blowup.

Tseitin’s Transformations
Theorem
For any Boolean formula 𝜑, there exists an
equisatisfiable 3-CNF 𝜓 of polynomial size.

• Equisatisfiability means that 𝜓 is satisfiable
iff so is 𝜑.

• Constructing an equivalent 3-CNF of
polynomial size is not always possible:
even translation to CNF can lead to
exponential blowup.

Tseitin’s Transformations

• Tseitin’s transformations look like
translation into 3-address (Assembler-like)
code:
(𝑎 + 𝑏) ∗ (𝑐 + 𝑑) is translated to
“add 𝑎 𝑏 𝑡1; add 𝑐 𝑑 𝑡2; mul 𝑡1 𝑡2 𝑟”

• For each subformula we introduce a new
variable and write the corresponding
equivalences.

Tseitin’s Transformations

• Tseitin’s transformations look like
translation into 3-address (Assembler-like)
code:
(𝑎 + 𝑏) ∗ (𝑐 + 𝑑) is translated to
“add 𝑎 𝑏 𝑡1; add 𝑐 𝑑 𝑡2; mul 𝑡1 𝑡2 𝑟”

• For each subformula we introduce a new
variable and write the corresponding
equivalences.

Tseitin’s Transformations

Example: (𝑝 → 𝑞) ∨ (𝑞 → (𝑝 → 𝑟))

(𝑡1 ↔ (𝑝 → 𝑞)) ∧
(𝑡2 ↔ (𝑝 → 𝑟)) ∧
(𝑡3 ↔ (𝑞 → 𝑡2)) ∧
(𝑡4 ↔ (𝑡1 ∨ 𝑡3)) ∧
𝑡4

Tseitin’s Transformations

Example: (𝑝 → 𝑞) ∨ (𝑞 → (𝑝 → 𝑟))

(𝑡1 ↔ (𝑝 → 𝑞)) ∧
(𝑡2 ↔ (𝑝 → 𝑟)) ∧
(𝑡3 ↔ (𝑞 → 𝑡2)) ∧
(𝑡4 ↔ (𝑡1 ∨ 𝑡3)) ∧
𝑡4

Tseitin’s Transformations
Transform into 3-CNF by the following table:

𝑡𝑘 ↔ (𝑡𝑖 ∧ 𝑡𝑗) (¬𝑡𝑖 ∨ ¬𝑡𝑗 ∨ 𝑡𝑘) ∧ (𝑡𝑖 ∨ ¬𝑡𝑘) ∧ (𝑡𝑗 ∨ ¬𝑡𝑘)
𝑡𝑘 ↔ (𝑡𝑖 ∨ 𝑡𝑗) (𝑡𝑖 ∨ 𝑡𝑗 ∨ ¬𝑡𝑘) ∧ (¬𝑡𝑖 ∨ 𝑡𝑘) ∧ (¬𝑡𝑗 ∨ 𝑡𝑘)
𝑡𝑘 ↔ (𝑡𝑖 → 𝑡𝑗) (¬𝑡𝑖 ∨ 𝑡𝑗 ∨ ¬𝑡𝑘) ∧ (𝑡𝑖 ∨ 𝑡𝑘) ∧ (¬𝑡𝑗 ∨ 𝑡𝑘)
𝑡𝑘 ↔ ¬𝑡𝑖 (𝑡𝑖 ∨ 𝑡𝑘) ∧ (¬𝑡𝑖 ∨ ¬𝑡𝑘)

For our example, we get:
(¬𝑝 ∨ 𝑞 ∨ ¬𝑡1) ∧ (𝑝 ∨ 𝑡1) ∧ (¬𝑞 ∨ 𝑡1) ∧
(¬𝑝 ∨ 𝑟 ∨ ¬𝑡2) ∧ (𝑝 ∨ 𝑡2) ∧ (¬𝑟 ∨ 𝑡2) ∧
(¬𝑞 ∨ 𝑡2 ∨ ¬𝑡3) ∧ (𝑞 ∨ 𝑡3) ∧ (¬𝑡2 ∨ 𝑡3) ∧
(𝑡1 ∨ 𝑡3 ∨ ¬𝑡4) ∧ (¬𝑡1 ∨ 𝑡4) ∧ (¬𝑡3 ∨ 𝑡4) ∧ 𝑡4

Tseitin’s Transformations
Transform into 3-CNF by the following table:

𝑡𝑘 ↔ (𝑡𝑖 ∧ 𝑡𝑗) (¬𝑡𝑖 ∨ ¬𝑡𝑗 ∨ 𝑡𝑘) ∧ (𝑡𝑖 ∨ ¬𝑡𝑘) ∧ (𝑡𝑗 ∨ ¬𝑡𝑘)
𝑡𝑘 ↔ (𝑡𝑖 ∨ 𝑡𝑗) (𝑡𝑖 ∨ 𝑡𝑗 ∨ ¬𝑡𝑘) ∧ (¬𝑡𝑖 ∨ 𝑡𝑘) ∧ (¬𝑡𝑗 ∨ 𝑡𝑘)
𝑡𝑘 ↔ (𝑡𝑖 → 𝑡𝑗) (¬𝑡𝑖 ∨ 𝑡𝑗 ∨ ¬𝑡𝑘) ∧ (𝑡𝑖 ∨ 𝑡𝑘) ∧ (¬𝑡𝑗 ∨ 𝑡𝑘)
𝑡𝑘 ↔ ¬𝑡𝑖 (𝑡𝑖 ∨ 𝑡𝑘) ∧ (¬𝑡𝑖 ∨ ¬𝑡𝑘)

For our example, we get:
(¬𝑝 ∨ 𝑞 ∨ ¬𝑡1) ∧ (𝑝 ∨ 𝑡1) ∧ (¬𝑞 ∨ 𝑡1) ∧
(¬𝑝 ∨ 𝑟 ∨ ¬𝑡2) ∧ (𝑝 ∨ 𝑡2) ∧ (¬𝑟 ∨ 𝑡2) ∧
(¬𝑞 ∨ 𝑡2 ∨ ¬𝑡3) ∧ (𝑞 ∨ 𝑡3) ∧ (¬𝑡2 ∨ 𝑡3) ∧
(𝑡1 ∨ 𝑡3 ∨ ¬𝑡4) ∧ (¬𝑡1 ∨ 𝑡4) ∧ (¬𝑡3 ∨ 𝑡4) ∧ 𝑡4

Beyond Decision Problems

• An NP decision problem is the question
whether there exists a witness 𝑦 such that
𝑅(𝑥, 𝑦) = 1.

• E.g., a satisfying assignment for 𝜑.
• Search problem: yield a witness or say “no.”
• Counting problem (the #P class): yield the
number of witnesses.

• Finally, we could ask for all witnesses.

Beyond Decision Problems

• An NP decision problem is the question
whether there exists a witness 𝑦 such that
𝑅(𝑥, 𝑦) = 1.

• E.g., a satisfying assignment for 𝜑.

• Search problem: yield a witness or say “no.”
• Counting problem (the #P class): yield the
number of witnesses.

• Finally, we could ask for all witnesses.

Beyond Decision Problems

• An NP decision problem is the question
whether there exists a witness 𝑦 such that
𝑅(𝑥, 𝑦) = 1.

• E.g., a satisfying assignment for 𝜑.
• Search problem: yield a witness or say “no.”

• Counting problem (the #P class): yield the
number of witnesses.

• Finally, we could ask for all witnesses.

Beyond Decision Problems

• An NP decision problem is the question
whether there exists a witness 𝑦 such that
𝑅(𝑥, 𝑦) = 1.

• E.g., a satisfying assignment for 𝜑.
• Search problem: yield a witness or say “no.”
• Counting problem (the #P class): yield the
number of witnesses.

• Finally, we could ask for all witnesses.

Beyond Decision Problems

• An NP decision problem is the question
whether there exists a witness 𝑦 such that
𝑅(𝑥, 𝑦) = 1.

• E.g., a satisfying assignment for 𝜑.
• Search problem: yield a witness or say “no.”
• Counting problem (the #P class): yield the
number of witnesses.

• Finally, we could ask for all witnesses.

Beyond Decision Problems
• The problem of yielding all witnesses could
be unconditionally non-polynomial, since
the answer could be exponential.

• If P = NP, then any search problem is
solvable in poly time.

• Dichotomy: take 𝜑[𝑝1 ∶= 0] and 𝜑[𝑝1 ∶= 1],
find out which is satisfiable, then do the same
for 𝑝2, 𝑝3, ….

• This gives a poly-time algorithm for the search
problem for 2-CNF.

• The counting problem could be harder
than the decision one (example: DNF-SAT).

Beyond Decision Problems
• The problem of yielding all witnesses could
be unconditionally non-polynomial, since
the answer could be exponential.

• If P = NP, then any search problem is
solvable in poly time.

• Dichotomy: take 𝜑[𝑝1 ∶= 0] and 𝜑[𝑝1 ∶= 1],
find out which is satisfiable, then do the same
for 𝑝2, 𝑝3, ….

• This gives a poly-time algorithm for the search
problem for 2-CNF.

• The counting problem could be harder
than the decision one (example: DNF-SAT).

Beyond Decision Problems
• The problem of yielding all witnesses could
be unconditionally non-polynomial, since
the answer could be exponential.

• If P = NP, then any search problem is
solvable in poly time.

• Dichotomy: take 𝜑[𝑝1 ∶= 0] and 𝜑[𝑝1 ∶= 1],
find out which is satisfiable, then do the same
for 𝑝2, 𝑝3, ….

• This gives a poly-time algorithm for the search
problem for 2-CNF.

• The counting problem could be harder
than the decision one (example: DNF-SAT).

Beyond Decision Problems
• The problem of yielding all witnesses could
be unconditionally non-polynomial, since
the answer could be exponential.

• If P = NP, then any search problem is
solvable in poly time.

• Dichotomy: take 𝜑[𝑝1 ∶= 0] and 𝜑[𝑝1 ∶= 1],
find out which is satisfiable, then do the same
for 𝑝2, 𝑝3, ….

• This gives a poly-time algorithm for the search
problem for 2-CNF.

• The counting problem could be harder
than the decision one (example: DNF-SAT).

Beyond Decision Problems
• The problem of yielding all witnesses could
be unconditionally non-polynomial, since
the answer could be exponential.

• If P = NP, then any search problem is
solvable in poly time.

• Dichotomy: take 𝜑[𝑝1 ∶= 0] and 𝜑[𝑝1 ∶= 1],
find out which is satisfiable, then do the same
for 𝑝2, 𝑝3, ….

• This gives a poly-time algorithm for the search
problem for 2-CNF.

• The counting problem could be harder
than the decision one (example: DNF-SAT).

