Polynomial Computations (exercises)

Let \mathfrak{M} be a deterministic Turing machine. For an input word x by $t_{\mathfrak{M}}(x)$ we denote the number of steps \mathfrak{M} performs when running on x (if it never stops, $t_{\mathfrak{M}}(x) = \infty$). By $T_{\mathfrak{M}}(n)$ we denote the maximal value of $t_{\mathfrak{M}}(x)$ where x ranges over words of length n:

$$T_{\mathfrak{M}}(n) = \max\{t_{\mathfrak{M}}(x) \mid |x| = n\}.$$

- 1. Suppose that \mathfrak{M} has m states, k letters in its internal alphabet, and uses at most s(x) memory cells when running on input x. Give an upper bound for $t_{\mathfrak{M}}(x)$, provided it is not ∞ (that is, \mathfrak{M} stops on x).
- 2. Consider a Turing machine \mathfrak{M}_2 with two tapes. At each step, it operates on each tape. Show that there exists a one-tape Turing machine \mathfrak{M} that computes the same function as \mathfrak{M}_2 . Give an upper bound for $T_{\mathfrak{M}}(n)$ in terms of $T_{\mathfrak{M}_2}(n)$. Do the same for the more general case of a k-tape machine \mathfrak{M}_k .
- 3. Does there exist an polynomial time algorithm for checking satisfiability of Boolean formulae in Disjunctive Normal Form?
- 4. Does there exist a polynomial time algorithm which checks whether a given graph is bipartite?
- 5. Does there exist a polynomial time algorithm which takes a graph and
 - (a) determines whether it has a Euler cycle;
 - (b) if the answer is "yes,", returns such a cycle?
- 6. Does there exist a polynomial time algorithm which takes a bipartite graph and
 - (a) determines whether it has a perfect matching;
 - (b) if the answer is "yes," returns one of such matchings?