Counting problems (\#P)

We are going to discuss counting versions of NP problems. It will be more convenient for us to use the definition of NP in terms of deterministic polynomial computations with hints. Namely, for an NP-problem A,

$$
x \in A \Longleftrightarrow(\exists y)(|y|<p(|x|) \text { and } R(x, y))
$$

where R is a polynomial-time computable predicate.
The corresponding counting problem, $\# A$, is the question how many hints, or witnesses, y, for a given x, satisfy $R(x, y)$. Each NP-problem has its counting counterpart. For example, SAT is the question "does the given Boolean formula have a satisfying assignment?", while \#SAT is "how many satisfying assignments does this Boolean formula have?"; HAMPATH is "is there a Hamiltonian path in the given (directed) graph?" and \#HAMPATH is "how many Hamiltonian paths does this graph have?" etc. These counting counterparts of NP decision problems form the \#P class.

Clearly, the counting problem $\# A$ is at least as hard as the decision problem A : if we can count the number of witnesses, we can then compare it with zero and answer whether there exists at least one witness. In particular, if $\mathrm{P} \neq \mathrm{NP}$ and A is NP-complete, then $\# A$ cannot be solved in polynomial time.

There are, however, situations when $A \in \mathrm{P}$, but $\# A$ is hard (i.e., not polynomial-time solvable, unless $P=N P$). In order to establish results of this sort, one develops the theory of \#P-completeness, which runs in parallel with the theory of NP-completeness.

Definition. A polynomial-time counting reduction of $\# A$ to $\# B$ is a pair of functions f and g, where f maps inputs of $\# A$ to inputs of $\# B$, and $g: \mathbb{N} \rightarrow \mathbb{N}$, such that

$$
\# A(x)=g(\# B(f(x))
$$

Notation: $\# A \leq_{c}^{P} \# B$.
Counting reduction is indeed a reduction in the following sense: if $\# B$ is polynomial-time solvable and $\# A \leq_{c}^{P} \# B$, then $\# A$ is also polynomial-time solvable.

A specific kind of counting reduction is parsimonious reduction, in which g is the identity function (i.e., $\# A(x)=\# B(f(x))$, just as in m-reductions of decision problem).

Definition. A counting problem $\# B$ is $\# \mathrm{P}$-complete, if for any $\# A \in \# \mathrm{P}$ we have $\# A \leq_{c}^{P} \# B$.
The reduction in the proof of Cook-Levin theorem and Tseitin transformations can be performed parsimoniously; thus, we establish the fact that \#SAT and \#3-SAT are \#P-complete.

Using only parsimonious reductions, however, does not give interesting results. The reason is that each parsimonious reduction for counting problems induces an m-reduction on decision problems. Thus, establishing \#P-completeness by parsimonious reductions implies NPcompleteness for corresponding decision problems (which itself already yields hardness of the counting problem without any reference to the theory of \#P-completeness).

More general counting reductions, however, could yield new results. Our first example is \#DNF-SAT, the counting problem for satisfying assignments of Boolean formulae in DNF. The corresponding decision problem, DNF-SAT, is polynomial-time decidable. For the counting
problem the situation is different, namely, $\# 3$-SAT $\leq_{c}^{P} \#$ DNF-SAT, whence \#DNF-SAT is \#P-complete.

Indeed, if φ is a 3 -CNF, then its negation, $\neg \varphi$, can be easily (polynomial-time) transformed into an equivalent DNF. Next, an assignment is satisfying for φ iff it is not satisfying for $\neg \varphi$, therefore

$$
\# \operatorname{SAT}(\varphi)=2^{n}-\# \operatorname{SAT}(\neg \varphi)
$$

where n is the number of variables (2^{n} is the total number of assignments). Thus, \#3-SAT is reduced to \#DNF-SAT by the following counting reduction:

$$
\begin{aligned}
& f: \varphi \mapsto \neg \varphi ; \\
& g: k \mapsto 2^{n}-k .
\end{aligned}
$$

Now, if $\mathrm{P} \neq \mathrm{NP}$, then \#DNF-SAT is not polynomial-time solvable. Indeed, polynomial-time solvability of \#DNF-SAT, by the aforementioned reduction, would yield that of \#3-SAT, and thus of 3-SAT, which is impossible.

The more famous example of \#P-complete problem is the permanent problem. We consider $n \times n$ Boolean matrices (i.e., constructed 0's and 1's, with operations modulo 2). Recall that the determinant of a matrix is

$$
\operatorname{det}\left(a_{i j}\right)=\sum_{\sigma \in \mathbf{S}_{n}}(-1)^{\operatorname{sign}(\sigma)} \prod_{i=1}^{n} a_{i \sigma(i)}
$$

(Here \mathbf{S}_{n} is the set (group) of all permutations of $\{1, \ldots, n\}$.) The determinant can be polynomially computed using, say, Gaussian elimination procedure.

The permanent is defined similarly, but without alternation of signs:

$$
\operatorname{perm}\left(a_{i j}\right)=\sum_{\sigma \in \mathbf{S}_{n}} \prod_{i=1}^{n} a_{i \sigma(i)}
$$

Computing the permanent can be seen as a counting problem: for a given matrix $\left(a_{i j}\right)$, count the number of permutations $\sigma \in \mathbf{S}_{n}$ such that $a_{i \sigma(i)}=1$ for all i. Thus, PERM $\in \#$ P. Valiant (1979) showed \#P-hardness of PERM, but using a more general notion of Turing reduction; Ben-Dor and Halevi (1993) did it by counting reduction. For proof details, see their paper: A. Ben-Dor, S. Halevi (1993), "Zero-one permanent is \#P-complete, a simple proof."

Interestingly enough, \#P-completeness of PERM yield that of \#2-SAT (Valiant 1979), even in its fragment with only monotone 2-CNF's (without negations). Recall that the 2-SAT decision problem is polynomial. For proof, see L. G. Valiant (1979), "The complexity of enumeration and reliability problems."

