
hse university, master’s program ‘data science’
discrete mathematics, sept.-oct. 2019

Counting problems (#P)

We are going to discuss counting versions of NP problems. It will be more convenient for
us to use the definition of NP in terms of deterministic polynomial computations with hints.
Namely, for an NP-problem A,

x ∈ A ⇐⇒ (∃y) (|y| < p(|x|) and R(x, y)),

where R is a polynomial-time computable predicate.
The corresponding counting problem, #A, is the question how many hints, or witnesses, y,

for a given x, satisfy R(x, y). Each NP-problem has its counting counterpart. For example, SAT
is the question “does the given Boolean formula have a satisfying assignment?”, while #SAT is
“how many satisfying assignments does this Boolean formula have?”; HAMPATH is “is there a
Hamiltonian path in the given (directed) graph?” and #HAMPATH is “how many Hamiltonian
paths does this graph have?” etc. These counting counterparts of NP decision problems form
the #P class.

Clearly, the counting problem #A is at least as hard as the decision problem A: if we can
count the number of witnesses, we can then compare it with zero and answer whether there
exists at least one witness. In particular, if P 6= NP and A is NP-complete, then #A cannot be
solved in polynomial time.

There are, however, situations when A ∈ P, but #A is hard (i.e., not polynomial-time
solvable, unless P = NP). In order to establish results of this sort, one develops the theory of
#P-completeness, which runs in parallel with the theory of NP-completeness.

Definition. A polynomial-time counting reduction of #A to #B is a pair of functions f and
g, where f maps inputs of #A to inputs of #B, and g : N→ N, such that

#A(x) = g(#B(f(x)).

Notation: #A ≤Pc #B.

Counting reduction is indeed a reduction in the following sense: if #B is polynomial-time
solvable and #A ≤Pc #B, then #A is also polynomial-time solvable.

A specific kind of counting reduction is parsimonious reduction, in which g is the identity
function (i.e., #A(x) = #B(f(x)), just as in m-reductions of decision problem).

Definition. A counting problem #B is #P-complete, if for any #A ∈ #P we have #A ≤Pc #B.

The reduction in the proof of Cook–Levin theorem and Tseitin transformations can be
performed parsimoniously; thus, we establish the fact that #SAT and #3-SAT are #P-complete.

Using only parsimonious reductions, however, does not give interesting results. The reason
is that each parsimonious reduction for counting problems induces an m-reduction on deci-
sion problems. Thus, establishing #P-completeness by parsimonious reductions implies NP-
completeness for corresponding decision problems (which itself already yields hardness of the
counting problem without any reference to the theory of #P-completeness).

More general counting reductions, however, could yield new results. Our first example is
#DNF-SAT, the counting problem for satisfying assignments of Boolean formulae in DNF. The
corresponding decision problem, DNF-SAT, is polynomial-time decidable. For the counting

1

problem the situation is different, namely, #3-SAT ≤Pc #DNF-SAT, whence #DNF-SAT is
#P-complete.

Indeed, if ϕ is a 3-CNF, then its negation, ¬ϕ, can be easily (polynomial-time) transformed
into an equivalent DNF. Next, an assignment is satisfying for ϕ iff it is not satisfying for ¬ϕ,
therefore

#SAT(ϕ) = 2n −#SAT(¬ϕ),

where n is the number of variables (2n is the total number of assignments). Thus, #3-SAT is
reduced to #DNF-SAT by the following counting reduction:

f : ϕ 7→ ¬ϕ;

g : k 7→ 2n − k.

Now, if P 6= NP, then #DNF-SAT is not polynomial-time solvable. Indeed, polynomial-time
solvability of #DNF-SAT, by the aforementioned reduction, would yield that of #3-SAT, and
thus of 3-SAT, which is impossible.

The more famous example of #P-complete problem is the permanent problem. We consider
n × n Boolean matrices (i.e., constructed 0’s and 1’s, with operations modulo 2). Recall that
the determinant of a matrix is

det(aij) =
∑
σ∈Sn

(−1)sign(σ)
n∏
i=1

aiσ(i).

(Here Sn is the set (group) of all permutations of {1, . . . , n}.) The determinant can be polyno-
mially computed using, say, Gaussian elimination procedure.

The permanent is defined similarly, but without alternation of signs:

perm(aij) =
∑
σ∈Sn

n∏
i=1

aiσ(i).

Computing the permanent can be seen as a counting problem: for a given matrix (aij), count
the number of permutations σ ∈ Sn such that aiσ(i) = 1 for all i. Thus, PERM ∈ #P. Valiant
(1979) showed #P-hardness of PERM, but using a more general notion of Turing reduction;
Ben-Dor and Halevi (1993) did it by counting reduction. For proof details, see their paper:
A. Ben-Dor, S. Halevi (1993), “Zero-one permanent is #P-complete, a simple proof.”

Interestingly enough, #P-completeness of PERM yield that of #2-SAT (Valiant 1979), even
in its fragment with only monotone 2-CNF’s (without negations). Recall that the 2-SAT decision
problem is polynomial. For proof, see L. G. Valiant (1979), “The complexity of enumeration
and reliability problems.”

2

