#P: Counting Problems

Stepan Kuznetsov

Discrete Math Bridging Course, HSE University

• There are several equivalent definitions of the NP class.

- There are several equivalent definitions of the NP class.
- Today we shall use Definition 2, with *hints*.

- There are several equivalent definitions of the NP class.
- Today we shall use Definition 2, with *hints*.
- Denote the decision problem by A(x).

$$\begin{split} A(x) &= 1 \iff \exists y \, (|y| < q(|x|) \, \& \, R(x,y) = 1), \\ \text{where } R \in P. \end{split}$$

- There are several equivalent definitions of the NP class.
- Today we shall use Definition 2, with *hints*.
- Denote the decision problem by A(x).

 $A(x) = 1 \iff \exists y (|y| < q(|x|) \& R(x, y) = 1),$

where $R \in P$.

• Let us check |y| < q(|x|) inside R.

- There are several equivalent definitions of the NP class.
- Today we shall use Definition 2, with *hints*.
- Denote the decision problem by A(x).

 $A(x) = 1 \iff \exists y \, (|y| < q(|x|) \, \& \, R(x,y) = 1),$

where $R \in P$.

- Let us check |y| < q(|x|) inside R.
- *y* is a *hint*, given by someone to help us solve the problem.

- There are several equivalent definitions of the NP class.
- Today we shall use Definition 2, with *hints*.
- Denote the decision problem by A(x).

 $A(x) = 1 \iff \exists y \, (|y| < q(|x|) \, \& \, R(x,y) = 1),$

where $R \in P$.

- Let us check |y| < q(|x|) inside R.
- *y* is a *hint*, given by someone to help us solve the problem.
- Examples of *y*: the satisfying assignment; the Hamiltonian cycle; ...

• An NP decision problem is the question whether there exists a witness y such that R(x, y) = 1.

- An NP decision problem is the question whether there exists a witness y such that R(x, y) = 1.
 - + E.g., a satisfying assignment for φ .

- An NP decision problem is the question whether there exists a witness y such that R(x, y) = 1.
 - E.g., a satisfying assignment for φ .
- We could ask for **all** witnesses, and the algorithm can yield them with **polynomial delay.**

- An NP decision problem is the question whether there exists a witness y such that R(x, y) = 1.
 - E.g., a satisfying assignment for φ .
- We could ask for **all** witnesses, and the algorithm can yield them with **polynomial delay.**
- Search problem: yield a witness or say "no."

- An NP decision problem is the question whether there exists a witness y such that R(x, y) = 1.
 - E.g., a satisfying assignment for φ .
- We could ask for **all** witnesses, and the algorithm can yield them with **polynomial delay.**
- Search problem: yield a witness or say "no."
- Counting problem (the #P class): yield the number of witnesses.

• A priori, the decision problem is the easiest one.

- A priori, the decision problem is the easiest one.
- Indeed, if we can solve the search problem or the counting problem, then we automatically get a solution for the decision problem (with the same *R*).

- A priori, the decision problem is the easiest one.
- Indeed, if we can solve the search problem or the counting problem, then we automatically get a solution for the decision problem (with the same *R*).
- However, search problems are also not harder than decision ones.

- A priori, the decision problem is the easiest one.
- Indeed, if we can solve the search problem or the counting problem, then we automatically get a solution for the decision problem (with the same *R*).
- However, search problems are also not harder than decision ones.
- Namely, if P = NP, then any search problem is also solvable in polynomial time.

- A priori, the decision problem is the easiest one.
- Indeed, if we can solve the search problem or the counting problem, then we automatically get a solution for the decision problem (with the same *R*).
- However, search problems are also not harder than decision ones.
- Namely, if P = NP, then any search problem is also solvable in polynomial time.
 - E.g., searching for SAT can be done via dichotomy using decision for SAT.

• #P is the class of counting problems corresponding to NP decision problems.

- #P is the class of counting problems corresponding to NP decision problems.
- Counting problems can be harder than the corresponding decision ones!

- #P is the class of counting problems corresponding to NP decision problems.
- Counting problems can be harder than the corresponding decision ones!

Theorem

#2-SAT is not solvable in polynomial time, unless P = NP (while 2-SAT as a decision problem belongs to P).

- #P is the class of counting problems corresponding to NP decision problems.
- Counting problems can be harder than the corresponding decision ones!

Theorem

#2-SAT is not solvable in polynomial time, unless P = NP (while 2-SAT as a decision problem belongs to P).

 In order to prove theorems like this one, one has to develop the theory of #P-completeness.

• As the theory of NP-completeness is based on polynomial m-reductions (denoted by $A \leq_m^P B$), the theory of #P-completeness is based on counting reductions: $#A \leq_c^P #B$.

- As the theory of NP-completeness is based on polynomial m-reductions (denoted by $A \leq_m^P B$), the theory of #P-completeness is based on counting reductions: $#A \leq_c^P #B$.
- A counting reduction consists of **two** functions, $f: \Sigma^* \to \Sigma^*$ on input data and $g: \mathbb{N} \to \mathbb{N}$ on counts (results).

- As the theory of NP-completeness is based on polynomial m-reductions (denoted by $A \leq_m^P B$), the theory of #P-completeness is based on counting reductions: $#A \leq_c^P #B$.
- A counting reduction consists of **two** functions, $f: \Sigma^* \to \Sigma^*$ on input data and $g: \mathbb{N} \to \mathbb{N}$ on counts (results).
- Recall that #*A* and #*B* are counting problems, that is,

 $\#A(x)=|\{y\mid R(x,y)=1\}|\in\mathbb{N},$

and the same for #B.

• We say that $\#A \leq_c^P \#B$, if there exists a pair of polynomially computable reducing functions f and g such that for any input x we have

$$\#A(x)=g(\#B(f(x))).$$

This indeed allows to reduce #A to #B.
Suppose we know how to solve #B. Then, in order to solve #A, we take x, apply f, then solve #B (yielding a natural number) and apply g.

#P-Completeness

- A counting problem #B is #P-complete, if for any other $\#A \in \#P$ we have $\#A \leq_c^P \#B$...
- ... just as for NP-completeness.
- Now we can develop a theory of #P-complete problems, which is parallel to the theory of NP-completeness.

- A counting reduction (f, g), where g is identity, g(n) = n, is called a **parsimonious** reduction.
- A parsimonious reduction is also a specific kind of m-reduction, since, in particular, g(0) = 0, thus, it conveys the answer to the decision problem.

• The reductions in Cook–Levin theorem are parsimonious.

- The reductions in Cook–Levin theorem are parsimonious.
 - Indeed, each trajectory of the non-deterministic run (that is, each value of hint y) is represented by exactly one satisfying assignment.

- The reductions in Cook–Levin theorem are parsimonious.
 - Indeed, each trajectory of the non-deterministic run (that is, each value of hint y) is represented by exactly one satisfying assignment.
- This yields the counting version of Cook–Levin:

- The reductions in Cook–Levin theorem are parsimonious.
 - Indeed, each trajectory of the non-deterministic run (that is, each value of hint y) is represented by exactly one satisfying assignment.
- This yields the counting version of Cook–Levin:

Theorem

#SAT is #P-complete.

• The sequence of configurations (protocol) of A on input x is encoded by a binary matrix (b_{ij}) of size $(m \cdot p(|x|)) \times p(|x|)$.

- The sequence of configurations (protocol) of A on input x is encoded by a binary matrix (b_{ij}) of size $(m \cdot p(|x|)) \times p(|x|)$.
- Next, we construct a formula φ_x with variables b_{00}, b_{01}, \dots which expresses the fact that this matrix represents a correct protocol of a successful execution.

- φ_x is a conjunction of the following claims:
 - the first row represents the configuration with x on the tape, the machine observing its first letter;
 - each next row is obtained from the previous one by one of the rules of the machine;
 - 3. the last row includes state q_F and the answer "yes" (1).

- φ_x is a conjunction of the following claims:
 - the first row represents the configuration with x on the tape, the machine observing its first letter;
 - each next row is obtained from the previous one by one of the rules of the machine;
 - 3. the last row includes state q_F and the answer "yes" (1).

This is all expressible as Boolean formulae.

• Tseitin's transformations are also parsimonious.

- Tseitin's transformations are also parsimonious.
- That is, any Boolean formula φ can be translated into a 3-CNF ψ, such satisfying assignments of ψ are in one-to-one correspondence with those for φ.

- Tseitin's transformations are also parsimonious.
- That is, any Boolean formula φ can be translated into a 3-CNF ψ, such satisfying assignments of ψ are in one-to-one correspondence with those for φ.
 - Values for new variables $t_i \mbox{ are restored } uniquely.$

- Tseitin's transformations are also parsimonious.
- That is, any Boolean formula φ can be translated into a 3-CNF ψ , such satisfying assignments of ψ are in one-to-one correspondence with those for φ .
 - Values for new variables t_i are restored uniquely.
- Thus, #3-SAT is also #P-complete.

Theorem

For any Boolean formula φ , there exists an equisatisfiable 3-CNF ψ of polynomial size.

• Equisatisfiability means that ψ is satisfiable iff so is φ .

Theorem

For any Boolean formula φ , there exists an equisatisfiable 3-CNF ψ of polynomial size.

- Equisatisfiability means that ψ is satisfiable iff so is φ .
- Constructing an *equivalent* 3-CNF of polynomial size is not always possible: even translation to CNF can lead to exponential blowup.

- Tseitin's transformations look like translation into 3-address (Assembler-like) code:
 - (a + b) * (c + d) is translated to "add $a \ b \ t_1$; add $c \ d \ t_2$; mul $t_1 \ t_2 \ r$ "

 Tseitin's transformations look like translation into 3-address (Assembler-like) code:

(a + b) * (c + d) is translated to "add $a \ b \ t_1$; add $c \ d \ t_2$; mul $t_1 \ t_2 \ r$ "

• For each subformula we introduce a new variable and write the corresponding equivalences.

Example: $(p \to q) \lor (q \to (p \to r))$

Example:
$$(p \to q) \lor (q \to (p \to r))$$

 $\begin{array}{l} (t_1 \leftrightarrow (p \rightarrow q)) \land \\ (t_2 \leftrightarrow (p \rightarrow r)) \land \\ (t_3 \leftrightarrow (q \rightarrow t_2)) \land \\ (t_4 \leftrightarrow (t_1 \lor t_3)) \land \\ t_4 \end{array}$

Transform into 3-CNF by the following table:

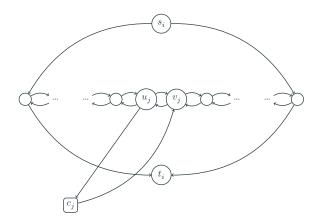
$$\begin{array}{l} t_k \leftrightarrow (t_i \wedge t_j) \\ t_k \leftrightarrow (t_i \vee t_j) \\ t_k \leftrightarrow (t_i \to t_j) \\ t_k \leftrightarrow (t_i \to t_j) \end{array} \left| \begin{array}{l} (\neg t_i \vee \neg t_j \vee t_k) \wedge (t_i \vee \neg t_k) \wedge (t_j \vee \neg t_k) \\ (t_i \vee t_j \vee \neg t_k) \wedge (\neg t_i \vee t_k) \wedge (\neg t_j \vee t_k) \\ (\neg t_i \vee t_j \vee \neg t_k) \wedge (t_i \vee t_k) \wedge (\neg t_j \vee t_k) \\ (t_i \vee t_k) \wedge (\neg t_i \vee \neg t_k) \end{array} \right|$$

Transform into 3-CNF by the following table:

$$\begin{array}{l} t_k \leftrightarrow (t_i \wedge t_j) \\ t_k \leftrightarrow (t_i \vee t_j) \\ t_k \leftrightarrow (t_i \vee t_j) \\ t_k \leftrightarrow (t_i \rightarrow t_j) \end{array} \left| \begin{array}{l} (\neg t_i \vee \neg t_j \vee t_k) \wedge (t_i \vee \neg t_k) \wedge (t_j \vee \neg t_k) \\ (t_i \vee t_j \vee \neg t_k) \wedge (\neg t_i \vee t_k) \wedge (\neg t_j \vee t_k) \\ (\neg t_i \vee t_j \vee \neg t_k) \wedge (t_i \vee t_k) \wedge (\neg t_j \vee t_k) \\ t_k \leftrightarrow \neg t_i \end{array} \right|$$

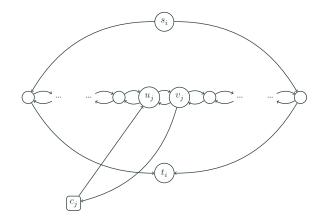
For our example, we get: $(\neg p \lor q \lor \neg t_1) \land (p \lor t_1) \land (\neg q \lor t_1) \land$ $(\neg p \lor r \lor \neg t_2) \land (p \lor t_2) \land (\neg r \lor t_2) \land$ $(\neg q \lor t_2 \lor \neg t_3) \land (q \lor t_3) \land (\neg t_2 \lor t_3) \land$ $(t_1 \lor t_3 \lor \neg t_4) \land (\neg t_1 \lor t_4) \land (\neg t_3 \lor t_4) \land t_4$

 In contrast, our reduction used for proving NP-hardness of HAMPATH is not parsimonious.


- In contrast, our reduction used for proving NP-hardness of HAMPATH is not parsimonious.
 - Namely, a satisfying assignment of a 3-CNF φ is simulated by *several* Hamiltonian paths in G_{φ} .

- In contrast, our reduction used for proving NP-hardness of HAMPATH is not parsimonious.
 - Namely, a satisfying assignment of a 3-CNF φ is simulated by *several* Hamiltonian paths in G_{φ} .
- There also exists a parsimonious reduction here.

- In contrast, our reduction used for proving NP-hardness of HAMPATH is not parsimonious.
 - Namely, a satisfying assignment of a 3-CNF φ is simulated by *several* Hamiltonian paths in G_{φ} .
- There also exists a parsimonious reduction here.
 - T. Seta. The Complexities of Puzzles, Cross Sum, and their Another Solution Problems (ASP).


Modelling Clauses in HAMPATH

Next, for each clause C_j we add a designated vertex c_j . If C_j includes x_i :

Modelling Clauses in HAMPATH

If C_j includes $\neg x_i$:

 Using only parsimonious reductions for establishing #P-completeness is meaningless.

- Using only parsimonious reductions for establishing #P-completeness is meaningless.
- Indeed, if a counting problem #A is proven #P-complete by parsimonious reductions, then its decision variant A is NP-complete.

- Using only parsimonious reductions for establishing #P-completeness is meaningless.
- Indeed, if a counting problem #A is proven #P-complete by parsimonious reductions, then its decision variant A is NP-complete.
- In this case, if P ≠ NP, we know that even A is not polynomially solvable, nothing to say about #A.

- Using only parsimonious reductions for establishing #P-completeness is meaningless.
- Indeed, if a counting problem #A is proven #P-complete by parsimonious reductions, then its decision variant A is NP-complete.
- In this case, if P ≠ NP, we know that even A is not polynomially solvable, nothing to say about #A.
- Using more general counting reductions, however, could give interesting results.

• Interesting cases include situations when the decision problem is polynomially decidable, while the counting problem is hard.

- Interesting cases include situations when the decision problem is polynomially decidable, while the counting problem is hard.
- The famous example is 2-SAT.

- Interesting cases include situations when the decision problem is polynomially decidable, while the counting problem is hard.
- The famous example is 2-SAT.
 - We know that $2\text{-SAT} \in P$.

- Interesting cases include situations when the decision problem is polynomially decidable, while the counting problem is hard.
- The famous example is 2-SAT.
 - We know that $2\text{-SAT} \in P$.
 - We shall not give the proof of #P-completeness for #2-SAT, since it is technically hard.

- Interesting cases include situations when the decision problem is polynomially decidable, while the counting problem is hard.
- The famous example is 2-SAT.
 - We know that $2\text{-SAT} \in P$.
 - We shall not give the proof of #P-completeness for #2-SAT, since it is technically hard.
 - See A. Ben-Dor, S. Halevi (1993), "Zero-one permanent is #P-complete, a simple proof" and L.G. Valiant (1979), "The complexity of enumeration and reliability problems".

• We shall consider an easier example: DNF-SAT vs. #DNF-SAT.

- We shall consider an easier example: DNF-SAT vs. #DNF-SAT.
- Easily, DNF-SAT \in P (as a decision problem).

- We shall consider an easier example: DNF-SAT vs. #DNF-SAT.
- Easily, DNF-SAT \in P (as a decision problem).
- However, in the counting case we can reduce from CNF-SAT by duality:

$$\begin{split} f(\varphi) &= \mathsf{DNF}(\neg \varphi) \\ g(n) &= 2^k - n \end{split}$$

(where k is the number of variables).

• Indeed, the set of satisfying assingments for φ is the complement of that for $\neg \varphi$.

- Indeed, the set of satisfying assingments for φ is the complement of that for $\neg \varphi$.
- If φ is in CNF, then DNF($\neg \varphi$) is polynomially computable.

- Indeed, the set of satisfying assingments for φ is the complement of that for $\neg \varphi$.
- If φ is in CNF, then DNF($\neg \varphi$) is polynomially computable.
- Thus, #CNF-SAT \leq_c^P #DNF-SAT, and therefore #DNF-SAT is #P-complete.

- Indeed, the set of satisfying assingments for φ is the complement of that for $\neg \varphi$.
- If φ is in CNF, then DNF($\neg \varphi$) is polynomially computable.
- Thus, #CNF-SAT \leq_c^P #DNF-SAT, and therefore #DNF-SAT is #P-complete.
- Corollary: if P ≠ NP, then #DNF-SAT is not polynomially solvable.

- Indeed, the set of satisfying assingments for φ is the complement of that for $\neg \varphi$.
- If φ is in CNF, then DNF($\neg \varphi$) is polynomially computable.
- Thus, #CNF-SAT \leq_c^P #DNF-SAT, and therefore #DNF-SAT is #P-complete.
- Corollary: if P ≠ NP, then #DNF-SAT is not polynomially solvable.
- Otherwise so would be #CNF-SAT, and therefore CNF-SAT, which implies P = NP.