#P: Counting Problems

Stepan Kuznetsov

Discrete Math Bridging Course, HSE University

The NP Class

- There are several equivalent definitions of
the NP class.

The NP Class

- There are several equivalent definitions of
the NP class.
- Today we shall use Definition 2, with hints.

The NP Class

- There are several equivalent definitions of
the NP class.

- Today we shall use Definition 2, with hints.

- Denote the decision problem by A(z).
Alz) =1 <= Ty (ly| <qllz]) & R(z,y) = 1),
where R € P.

The NP Class

- There are several equivalent definitions of
the NP class.

- Today we shall use Definition 2, with hints.

- Denote the decision problem by A(z).

Alz) =1 < Fy(jyl <q(lz]) & R(z,y) = 1),

where R € P.
- Let us check |y| < ¢(|z]) inside R.

The NP Class

- There are several equivalent definitions of
the NP class.

- Today we shall use Definition 2, with hints.

- Denote the decision problem by A(z).

Alz) =1 < Fy(jyl <q(lz]) & R(z,y) = 1),

where R € P.

- Let us check |y| < ¢(|z]) inside R.

-y IS a hint, given by someone to help us
solve the problem.

The NP Class

- There are several equivalent definitions of
the NP class.

- Today we shall use Definition 2, with hints.

- Denote the decision problem by A(z).

Alz) =1 <= Ty (ly| <qllz]) & R(z,y) = 1),
where R € P.

- Let us check |y| < ¢(|z]) inside R.

-y IS a hint, given by someone to help us
solve the problem.

- Examples of y: the satisfying assignment;
the Hamiltonian cycle; ...

Beyond Decision Problems

- An NP decision problem is the question
whether there exists a witness y such that
R(z,y) = 1.

Beyond Decision Problems

- An NP decision problem is the question
whether there exists a witness y such that
R(z,y) = 1.

- E.g, a satisfying assignment for .

Beyond Decision Problems

- An NP decision problem is the question
whether there exists a witness y such that
R(z,y) = 1.

- E.g, a satisfying assignment for .

- We could ask for all witnesses, and the
algorithm can yield them with polynomial
delay.

Beyond Decision Problems

- An NP decision problem is the question
whether there exists a witness y such that
R(z,y) = 1.

- E.g, a satisfying assignment for .

- We could ask for all witnesses, and the
algorithm can yield them with polynomial
delay.

- Search problem: yield a witness or say “no.”

Beyond Decision Problems

- An NP decision problem is the question
whether there exists a witness y such that
R(z,y) = 1.

- E.g, a satisfying assignment for .

- We could ask for all witnesses, and the
algorithm can yield them with polynomial
delay.

- Search problem: yield a witness or say “no.”

- Counting problem (the #P class): yield the
number of witnesses.

Beyond Decision Problems

- A priori, the decision problem is the easiest
one.

Beyond Decision Problems

- A priori, the decision problem is the easiest
one.

- Indeed, if we can solve the search problem
or the counting problem, then we
automatically get a solution for the
decision problem (with the same R).

Beyond Decision Problems

- A priori, the decision problem is the easiest
one.

- Indeed, if we can solve the search problem
or the counting problem, then we
automatically get a solution for the
decision problem (with the same R).

- However, search problems are also not
harder than decision ones.

Beyond Decision Problems

- A priori, the decision problem is the easiest
one.

- Indeed, if we can solve the search problem
or the counting problem, then we
automatically get a solution for the
decision problem (with the same R).

- However, search problems are also not

harder than decision ones.

- Namely, if P = NP, then any search problem
Is also solvable in polynomial time.

Beyond Decision Problems

- A priori, the decision problem is the easiest
one.

- Indeed, if we can solve the search problem
or the counting problem, then we
automatically get a solution for the
decision problem (with the same R).

- However, search problems are also not

harder than decision ones.
- Namely, if P = NP, then any search problem
Is also solvable in polynomial time.
- E.g, searching for SAT can be done via
dichotomy using decision for SAT.

Counting Problems

- #P is the class of counting problems
corresponding to NP decision problems.

Counting Problems

- #P is the class of counting problems
corresponding to NP decision problems.

- Counting problems can be harder than the
corresponding decision ones!

Counting Problems

- #P is the class of counting problems
corresponding to NP decision problems.

- Counting problems can be harder than the
corresponding decision ones!

Theorem
#2-SAT is not solvable in polynomial time,

unless P = NP (while 2-SAT as a decision
problem belongs to P).

Counting Problems

- #P is the class of counting problems
corresponding to NP decision problems.

- Counting problems can be harder than the
corresponding decision ones!

Theorem

#2-SAT is not solvable in polynomial time,
unless P = NP (while 2-SAT as a decision
problem belongs to P).

- In order to prove theorems like this one,
one has to develop the theory of
#P-completeness.

Counting Reductions

- As the theory of NP-completeness is based
on polynomial m-reductions (denoted by
A <P B), the theory of #P-completeness is
based on counting reductions: #A4 < #B.

Counting Reductions

- As the theory of NP-completeness is based
on polynomial m-reductions (denoted by
A <P B), the theory of #P-completeness is
based on counting reductions: #A4 < #B.

- A counting reduction consists of two
functions, f: X* — X* on input data and
g: N — N on counts (results).

Counting Reductions

- As the theory of NP-completeness is based
on polynomial m-reductions (denoted by
A <P B), the theory of #P-completeness is
based on counting reductions: #A4 < #B.

- A counting reduction consists of two
functions, f: X* — X* on input data and
g: N — N on counts (results).

- Recall that #A and #B are counting
problems, that is,

#A(x) = {y | R(z,y) =1} € N,
and the same for #B.

Counting Reductions

- We say that #A4 <P #B, if there exists a
pair of polynomially computable reducing
functions f and g such that for any input x
we have

#A(x) = g(#B(f(2))).

- This indeed allows to reduce #A to #B.
Suppose we know how to solve #B. Then,
in order to solve #A, we take z, apply f,
then solve #B (yielding a natural number)
and apply g.

#P-Completeness

- A counting problem #B is #P-complete, if
for any other #A € #P we have
#A <P 4B.

- ... Just as for NP-completeness.

- Now we can develop a theory of
#P-complete problems, which is parallel to
the theory of NP-completeness.

Parsimonious Reductions

- A counting reduction (f,g), where g is
identity, g(n) = n, is called a parsimonious
reduction.

- A parsimonious reduction is also a specific
kind of m-reduction, since, in particular,
g(0) = 0, thus, it conveys the answer to the
decision problem.

Parsimonious Reductions

- The reductions in Cook-Levin theorem are
parsimonious.

Parsimonious Reductions

- The reductions in Cook-Levin theorem are
parsimonious.

- Indeed, each trajectory of the
non-deterministic run (that is, each value of
hint y) is represented by exactly one satisfying
assignment.

Parsimonious Reductions

- The reductions in Cook-Levin theorem are
parsimonious.

- Indeed, each trajectory of the
non-deterministic run (that is, each value of
hint y) is represented by exactly one satisfying
assignment.

- This yields the counting version of
Cook-Levin:

Parsimonious Reductions

- The reductions in Cook-Levin theorem are
parsimonious.

- Indeed, each trajectory of the
non-deterministic run (that is, each value of
hint y) is represented by exactly one satisfying
assignment.

- This yields the counting version of
Cook-Levin:

Theorem
#SAT Is #P-complete.

Cook - Levin Theorem

- The sequence of configurations (protocol)
of A on input z is encoded by a binary
matrix (b;;) of size (m - p(|z|)) x p(|z]).

Cook - Levin Theorem

- The sequence of configurations (protocol)
of A on input z is encoded by a binary
matrix (b;;) of size (m - p(|z|)) x p(|z]).

- Next, we construct a formula ¢, with
variables by, byy, ... Which expresses the
fact that this matrix represents a correct
protocol of a successful execution.

Cook - Levin Theorem

¢, 1S a conjunction of the following claims:

1. the first row represents the configuration
with 2 on the tape, the machine observing
Its first letter;

2. each next row is obtained from the
previous one by one of the rules of the
machine;

3. the last row includes state ¢ and the
answer “yes” (1).

Cook - Levin Theorem

¢, 1S a conjunction of the following claims:

1. the first row represents the configuration
with 2 on the tape, the machine observing
Its first letter;

2. each next row is obtained from the
previous one by one of the rules of the
machine;

3. the last row includes state ¢ and the
answer “yes” (1).

This is all expressible as Boolean formulae.

Parsimonious Reductions

- Tseitin’s transformations are also
parsimonious.

Parsimonious Reductions

- Tseitin's transformations are also
parsimonious.

- That is, any Boolean formula ¢ can be
translated into a 3-CNF), such satisfying

assignments of) are in one-to-one
correspondence with those for .

Parsimonious Reductions

- Tseitin's transformations are also
parsimonious.

- That is, any Boolean formula ¢ can be
translated into a 3-CNF), such satisfying
assignments of) are in one-to-one
correspondence with those for .

- Values for new variables t, are restored
uniquely.

Parsimonious Reductions

- Tseitin’s transformations are also
parsimonious.

- That is, any Boolean formula ¢ can be
translated into a 3-CNF), such satisfying
assignments of) are in one-to-one
correspondence with those for .

- Values for new variables t, are restored
uniquely.

- Thus, #3-SAT is also #P-complete.

Tseitin’s Transformations

Theorem

For any Boolean formula ¢, there exists an
equisatisfiable 3-CNF +) of polynomial size.

- Equisatisfiability means that « is satisfiable
Iff so is .

Tseitin’s Transformations

Theorem
For any Boolean formula ¢, there exists an
equisatisfiable 3-CNF +) of polynomial size.

- Equisatisfiability means that « is satisfiable
Iff so is .

- Constructing an equivalent 3-CNF of
polynomial size is not always possible:
even translation to CNF can lead to
exponential blowup.

Tseitin’s Transformations

- Tseitin's transformations look like
translation into 3-address (Assembler-like)
code:

(a+b)* (¢ +d) is translated to
“‘add a b ty; add e d ty; mul ty ty 7"

Tseitin’s Transformations

- Tseitin’s transformations look like
translation into 3-address (Assembler-like)
code:

(a+b)* (¢ +d) is translated to
“‘add a b ty; add e d ty; mul ty ty 7"

- For each subformula we introduce a new
variable and write the corresponding
equivalences.

Tseitin’s Transformations

Example: (p = q) V(g — (p = 1))

Tseitin’s Transformations

Example: (p = q) V(g — (p = 1))

(t; < (= q) A
(ty > (p—= 1)) A
(t3 <> (@ = t3)) A
(ty <> (t1 ViEg) A

Tseitin’s Transformations

Transform into 3-CNF by the following table:

t < (G At;) | (Tt Vot Vit) At V—ty) AtV —ty)
ty < (8, Vi) | (8, ViE;Vot) A=t Vi) A=t Vi)
tp < (t; —t;) | (Zt, Vi, Vot At Vi) A (=t Vi)
t,, < i, (t; Vi) A(=t; V—ty,)

Tseitin’s Transformations

Transform into 3-CNF by the following table:

t < (G At;) | (Tt Vot Vit) At V—ty) AtV —ty)
ty < (t; Vi) | (t; Vi \/ﬁt)/\(ﬁti\/t) (=t Vi)
ty < (t; = t;) | (=t \/t vﬁt)A(tin) (—t; Vi)
by <t (

2

For our example, we get:
(mpVaqV—t) Ap Vi) A(mg Vi) A
(mp V71V —ty) A(pVity) A(—rViy) A
(ﬁq Vv t2 —tg) A (g Vig) A (Tty Vitg) A

Parsimonious Reductions

- In contrast, our reduction used for proving
NP-hardness of HAMPATH is not
parsimonious.

Parsimonious Reductions

- In contrast, our reduction used for proving
NP-hardness of HAMPATH is not
parsimonious.

- Namely, a satisfying assignment of a 3-CNF ¢ is
simulated by several Hamiltonian paths in G .

Parsimonious Reductions

- In contrast, our reduction used for proving
NP-hardness of HAMPATH is not
parsimonious.

- Namely, a satisfying assignment of a 3-CNF ¢ is
simulated by several Hamiltonian paths in G .

- There also exists a parsimonious reduction

here.

Parsimonious Reductions

- In contrast, our reduction used for proving
NP-hardness of HAMPATH is not
parsimonious.

- Namely, a satisfying assignment of a 3-CNF ¢ is
simulated by several Hamiltonian paths in G .

- There also exists a parsimonious reduction
here.

- T.Seta. The Complexities of Puzzles, Cross Sum,
and their Another Solution Problems (ASP).

Modelling Clauses in HAMPATH

Next, for each clause C; we add a designated
vertex c;. If C; includes x;:

Modelling Clauses in HAMPATH

If C; includes —z;:

Beyond Parsimonious Reductions

- Using only parsimonious reductions for
establishing #P-completeness is
meaningless.

Beyond Parsimonious Reductions

- Using only parsimonious reductions for
establishing #P-completeness is
meaningless.

- Indeed, if a counting problem #A is proven
#P-complete by parsimonious reductions,
then its decision variant A is NP-complete.

Beyond Parsimonious Reductions

- Using only parsimonious reductions for
establishing #P-completeness is
meaningless.

- Indeed, if a counting problem #A is proven
#P-complete by parsimonious reductions,
then its decision variant A is NP-complete.

- In this case, if P £ NP, we know that even A
Is not polynomially solvable, nothing to say
about #A.

Beyond Parsimonious Reductions

- Using only parsimonious reductions for
establishing #P-completeness is
meaningless.

- Indeed, if a counting problem #A is proven
#P-complete by parsimonious reductions,
then its decision variant A is NP-complete.

- In this case, if P £ NP, we know that even A
Is not polynomially solvable, nothing to say
about #A.

- Using more general counting reductions,
however, could give interesting results.

A € P, #A #P-complete

- Interesting cases include situations when
the decision problem is polynomially
decidable, while the counting problem is
hard.

A € P, #A #P-complete

- Interesting cases include situations when
the decision problem is polynomially
decidable, while the counting problem is

hard.
- The famous example is 2-SAT.

A € P, #A #P-complete

- Interesting cases include situations when
the decision problem is polynomially
decidable, while the counting problem is

hard.
- The famous example is 2-SAT.
- We know that 2-SAT € P.

A € P, #A #P-complete

- Interesting cases include situations when
the decision problem is polynomially
decidable, while the counting problem is

hard.
- The famous example is 2-SAT.
- We know that 2-SAT € P.
- We shall not give the proof of
#P-completeness for #2-SAT, since it is
technically hard.

A € P, #A #P-complete

- Interesting cases include situations when
the decision problem is polynomially
decidable, while the counting problem is

hard.
- The famous example is 2-SAT.

- We know that 2-SAT € P.

- We shall not give the proof of
#P-completeness for #2-SAT, since it is
technically hard.

- See A. Ben-Dor, S. Halevi (1993), “Zero-one
permanent is #P-complete, a simple proof”
and L.G. valiant (1979), “The complexity of
enumeration and reliability problems”.

A € P, #A #P-complete

- We shall consider an easier example:
DNF-SAT vs. #DNF-SAT.

A € P, #A #P-complete

- We shall consider an easier example:
DNF-SAT vs. #DNF-SAT.

- Easily, DNF-SAT € P (as a decision problem).

A € P, #A #P-complete

- We shall consider an easier example:
DNF-SAT vs. #DNF-SAT.

- Easily, DNF-SAT € P (as a decision problem).

- However, in the counting case we can
reduce from CNF-SAT by duality:

= DNF(—¢p)
g(n) =2F—n

(where k is the number of variables).

A € P, #A #P-complete

- Indeed, the set of satisfying assingments
for ¢ is the complement of that for —.

A € P, #A #P-complete

- Indeed, the set of satisfying assingments
for ¢ is the complement of that for —.

- If ¢ is in CNF, then DNF(—y) is polynomially
computable.

A € P, #A #P-complete

- Indeed, the set of satisfying assingments
for ¢ is the complement of that for —.

- If ¢ is in CNF, then DNF(—y) is polynomially
computable.

- Thus, #CNF-SAT <P #DNF-SAT, and
therefore #DNF-SAT is #P-complete.

A € P, #A #P-complete

- Indeed, the set of satisfying assingments
for ¢ is the complement of that for —.

- If ¢ is in CNF, then DNF(—y) is polynomially
computable.

- Thus, #CNF-SAT <P #DNF-SAT, and
therefore #DNF-SAT is #P-complete.

- Corollary: if P £ NP, then #DNF-SAT is not
polynomially solvable.

A € P, #A #P-complete

- Indeed, the set of satisfying assingments
for ¢ is the complement of that for —.

- If ¢ is in CNF, then DNF(—y) is polynomially
computable.

- Thus, #CNF-SAT <P #DNF-SAT, and
therefore #DNF-SAT is #P-complete.

- Corollary: if P £ NP, then #DNF-SAT is not
polynomially solvable.

- Otherwise so would be #CNF-SAT, and
therefore CNF-SAT, which implies P = NP.

