
Government of the Russian Federation

National Research University "Higher School of Economics"

Faculty of Computer Science
School of Data Analysis and Artificial Intelligence

Discrete Mathematics for Algorithm and Software Design
for Master degree specialisation

010402.68 "Applied Mathematics and Informatics"
for "Data Sciences" Master program

Author:
Stepan Kuznetsov, Ph.D.

sk@mi.ras.ru

Approved on the meeting of the School of Data
Analysis and Artificial Intelligence

Head of School Sergei O. Kuznetsov

Date: ________________, 2016

 APPROVED BY
Academic Supervisor of the Master program "Data
Sciences", specialisation 010402 "Applied
Mathematics and Informatics"
Sergei O. Kuznetsov

Date: ________________, 2016

Recommended by the Academic Council of the
Programme "Applied Mathematics and Informatics" Date: ____________, 2016

Manager of the School of Data Analysis and
Artificial Intelligence Larisa I. Antropova _______________________

Moscow, 2016

This syllabus must not be used by other departments of the university and other educational institutions
without permission of the department of the syllabus author.

1. Teachers
Author, associate professor: Stepan Kuznetsov, National Research University Higher School of Economics,
Department of Computer Science.

2. Scope of Use
The present program establishes minimum demands of students' knowledge and skills, and determines
contents of the course.
The present syllabus is aimed at department teaching the course, their teaching assistants, and students of the
Master of Science program 010402.68 «Applied Mathematics and Infomatics».
This syllabus meets the standards required by:

• educational standards of National Research University Higher School of Economics;
• educational program «Data Sciences» of Federal Master's Degree Program 010402.68, 2016;
• University curriculum of Master's program in «Data Science» (010402.68) for 2016.

Summary

This course includes the basics of mathematical logic, graph theory, combinatorics, and formal language
theory. The emphasis is put upon the algorithmic side: mathematical results act as a support for effecient
algorithms operating on graphs, strings, and, finally, parsing algorithms for regular expressions and context-
free grammars. The course is actually twofold: besides usual «chalk-and-blackboard» mathematical part, it
also includes a practical one, i.e., implementing the algorithms discussed in the course. The students are
supposed and encouraged to (but not restricted to) use the Python language. For the last part, parsing
algorithms, PyBison is also welcome.

3. Learning Objectives
The learning objective of this course is to make the students firmly understand and use the following notions:

• classical propositional logic (in the Hilbert-style and/or resolution calculus)
• classical predicate logic
• graphs and algorithms on them (DFS, BFS, Dijkstra's algorithm etc)
• algorithms on strings: pattern-matching, maximal common substring, etc
• regular expressions, effective lexical analysis
• context-free grammars and parsing algorithms for them (CYK, LR)

4. Learning Outcomes
After completing this course the student should:

• know classical propositional and predicate calculi;
• know the notion of graph and basic algorithms on graphs;
• be able to implement algorithms on graphs and strings;
• be able to formalize the structure of a given formal language using regular expressions and context-

free grammars;
• be able to use automated parser generators to utilize the aforemented grammars.

5. Place of the Discipline in the Master's Program Structure
The course «Discrete Mathematics for Algorithm and Software Design» is an adaptation course taught in the
first year of the Master's program «Data Science». It is recommended for all students of the program who
didn't take in-depth courses in mathematical logic, discrete mathematics and formal language theory in their
previous education and/or didn't have enough practice in implementing algorithms mentioned above and
constructing parsers for formal languages.

Prerequisites
It is supposed that the students enrolled in this course are capable of programming in Python or another
programming language and are fluent in English. No other special knowledge is required.

After completing this course, the student should have the following competences:

Competence Code Code
(UC)

Descriptors (indicators of
achievement of the result)

Educative forms
and methods
aimed at
generation and
development of the
competence

The ability to reflect developed
methods of activity

C-1 SC-M1 The student is able to reflect
developed methods in
discrete mathematics and
mathematical logic, and also
the programming tradition.

Lectures and
tutorials.

The ability to propose a model to
invent and test methods and tools
of professional activity

C-2 SC-M2 The student is able to model
real-life objects using
notions of mathematical
logic and discrete
mathematics.

Examples discussed
during the lectures
and tutorials.
Assignments

Capability of development of new
research methods, change of
scientific and industrial profile of
self-activities

C-3 SC-M3 Students are capable of
implementing theoretical
results (algorithms) as
programs in an appropriate
programming environment,
that can be used in practice.

Tutorials, practical
assignments, extra
reading suggested.

6. Schedule
Each week this course occupies 2 academic hours for lecture followed by 2 academic hour for practical
tutorial (in a computer class).

№ Topic
Total
hours

Contact hours
Self-study

Lectures Practicum

1 Classical propositional logic 8 2 2 4

2 Classical predicate logic 8 2 2 4

3 Basic notions of graph theory 12 2 2 8

4 Algorithms of graphs 20 2 2 16

5 Algorithms on strings 16 2 2 12

6 Regular expressions 16 2 2 12

7 Context-free grammars and parsing
algorithms

28 4 4 20

Total: 108 16 16 76

7. Requirements and Grading

• Test: an optional test to withdraw from the subject. Students with sufficient prior knowledge in
discrete mathematics and mathematical logic and good programming skills are not required to attend
the course.

• Homework: 3 assignments during the semester: one written, two programming.
• Exam: written exam. Preparation time — 180 min.

8. Assessment

The assessment consists of three homeworks, handed to the students during the course. The students are
supposed to do exersises based on lecture topics, and also implement the discussed algorithms. The final
assessment is the final exam. It will consist of 7 problems graded equally.

Grade formula: the final course mark is obtained from the following formula:
Final = 0.5 * (Homeworks) + 0.5 * (Exam)

All grades with the fractional part strictly greater then 0.5 are rounded up. Rounding when the fractional part
less or equal to 0.5 is determined by the lecturer/examiner.

Table of Grade Accordance

Ten-point
Grading Scale

Five-point
Grading Scale

Binary
Grading Scale

1 — very bad
2 — bad
3 — no pass

Unsatisfactory — 2 FAIL

4 — pass
5 — highly pass

Satisfactory — 3

PASS
6 — good
7 — very good

Good — 4

8 — almost excellent
9 — excellent
10 — perfect

Excellent — 5

9. Course Description

Topic 1. Classical Propositional Logic
Propositional formulae. Classical (Boolean) interpretation of propositional formulae. Tautologies and
satisfiable formulae. Classical propositional calculus (Hilbert-style derivations). Resolution method.

Topic 2. Classical Predicate Logic
Predicate formulae; quantifiers. Interpretations (models) of predicate logic. Predicate calculus. Completeness
and undecidability of classical predicate logic (without proof). Proof search and proof assistants (overview).

Topic 3. Basic Notions of Graph Theory
Definition of graph. Special types of graphs. Trees. Using graphs for modelling networks etc. Isomorphism
of graphs. Euler graphs.

Topic 4. Algorithms on Graphs
BFS. DFS. Dijkstra's algorithm. Checking whether a graph is a Euler graph.

For advanced students: the notion of NP-hardness. NP-hardness of 3-SAT and Hamiltonian path problems.

Topic 5. Algorithms on Strings

Topic 6. Regular Expressions
The notion of regular expression. Regular expressions and finite automata (Kleene's theorem): sketch of
proof, examples. Algorithms for matching with regular expressions. Implementation of regular expressions
(e.g., in Python).

Topic 7. Context-Free Grammars and Parsing Algorithms

Context-free grammars and context-free languages. Parsing with CFG: CYK, LR (overview). The limits of
CFG (pumping lemma). Practical parsing using CFG: the Bison/YACC parser generator.

10. Term Educational Technology
The following educational technologies are supposed to be used in the study process:

• lectures;
• discussion and analysis of the results during tutorials;
• regular assignments to train the students and monitor their progress;
• posting solutions of the exercises and related materials on the course webpage;
• consultations and code review (mainly online, by e-mail).

11. Recommendations for Course Lecturer
The lecturer is advised to make the course interactive. The lectures, usually based on beamer slide
presentations and/or writing on board, are expected to turn into group discussions sometimes. The practical
part should indeed include one-to-one discussions with all the students involved (if there are many students,
teaching assistants are required). The course is declared as adaptive, however, it is normal to provide
advanced learners with more complicated and interesting tasks.

12. Recommendations for Students
The course is planned to me as interactive as possible. Students are encouraged to ask questions and actively
participate in the classes. The lecturer is ready to answer questions online via e-mail, in particular, questions
concerning the programming part, including in-depth code review and comments. The course is taught in
English, and students can ask the lecturer and teaching assistants to help them with the language.

13. Final Exam Questions
The final exam will consist of 7 questions, one per each section of the course. The questions will be weighted
equally. No material is allowed for the exam.

14. Materials

Recommended Reading
• C. C. Leary, L. Kristiansen. A friendly introduction to mathematical logic (2nd edition). Milne

Library, SUNY Geneseo, NY, 2015.
• J. E. Hopcroft, R. Motwani, J. D. Ullman. Introduction to automata theory, languages, and

computation (3rd edition). Pearson, 2007
• Python reference manual: https://docs.python.org/2/reference/
• T. Niemann. Lex & Yacc tutorial:

 http://epaperpress.com/lexandyacc/download/LexAndYaccTutorial.pdf

Supplementary Reading
• I. Chiswell, W. Hodges. Mathematical logic. Oxford University Press, 2007.
• T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein. Introduction to Algorithms (3rd edition), MIT

Press, 2009.
• A. V. Aho, M. S. Lam, R. Sethi. J. D. Ullman. Compilers: principles, techniques, and tools (2nd

edition). Addison-Wesley, 2006.

Course materials will be made available through the author's webpage, http://www.mi.ras.ru/~sk/
Students will be provided with lecture notes, problem sheets and examples with solutions, home assignments
and additional readings.

15. Equipment
For the lectures, a laptop with a projector is required, along with a blackboard (whiteboard). The practical
part requires a computer class with a working Python development environment.

The course structure and this syllabus are prepared by Stepan Kuznetsov.

http://www.mi.ras.ru/~sk/

