Home Assignment #1: Propositional Logic

1. Translate the following propositional formulae into Conjunctive Normal Form:

a. $((((p \to q) \to \neg p) \to \neg q) \to \neg r) \to r;$

b. $(p \to (q \to r)) \to ((p \to \neg r) \to (p \to \neg q)).$

2. Construct a formula A such that the formula $(A \land q) \to \neg p) \to ((p \to \neg q) \to A)$ is a tautology.

3. Construct a formula with variables p, q, r that is true if and only if at least two of the variables are true.

4. Construct a formula A such that $(r \to A) \equiv (r \to (p \land q))$ and $(A \to r) \equiv (\neg (p \lor q) \to r)$.

5. Use the resolution method to (dis)prove satisfiability of the formulae (in CNF) from Task 1.

6. The formula A includes only variables p_1, \ldots, p_k and the following logical operations: \lor, \land , and \rightarrow (but not the negation, \neg). Prove that any CNF for A doesn't include the clause $(\neg p_1 \lor \ldots \lor \neg p_k)$.

Deadline: Thursday, September 29.

Please bring your answers in written form to the class on Wednesday, September 28 or Thursday, September 29. If you're not going to attend these classes, please send a scan/photo to sk@mi.ras.ru