Home Assignment \#1: Propositional Logic

1. Translate the following propositional formulae into Conjunctive Normal Form:
a. $((((p \rightarrow q) \rightarrow \neg p) \rightarrow \neg q) \rightarrow \neg r) \rightarrow r$;
b. $(p \rightarrow(q \rightarrow r)) \rightarrow((p \rightarrow \neg r) \rightarrow(p \rightarrow \neg q))$.
2. Construct a formula A such that the formula $(A \wedge q) \rightarrow \neg p) \rightarrow((p \rightarrow \neg q) \rightarrow A)$ is a tautology.
3. Construct a formula with variables p, q, r that is true if and only if at least two of the variables are true.
4. Construct a formula A such that $(r \rightarrow A) \equiv(r \rightarrow(p \wedge q))$ and $(A \rightarrow r) \equiv(\neg(p \vee q) \rightarrow r)$.
5. Use the resolution method to (dis) prove satisfiability of the formulae (in CNF) from Task 1.
6. The formula A includes only variables p_{1}, \ldots, p_{k} and the following logical operations: \vee, \wedge, and \rightarrow (but not the negation, \neg). Prove that any CNF for A doesn't include the clause $\left(\neg p_{1} \vee \ldots \vee \neg p_{k}\right)$.

Deadline: Thursday, September 29.

Please bring your answers in written form to the class on Wednesday, September 28 or Thursday, September 29.
If you're not going to attend these classes, please send a scan/photo to sk@mi.ras.ru

