Questionnaire for Students

Name: \qquad
Do you speak English fluently?
What programming languages do you know? \qquad

What is your background (i.e., what and where did you study for your bachelor / specialist degree)?

Preliminary (Withdrawal) Test

1.a. Rewrite the following formula in Conjunctive Normal Form: $((r \rightarrow q) \rightarrow p) \rightarrow q)$
1.b. Construct a propositional formula A, such that $(p \rightarrow A) \equiv(q \rightarrow(\neg p \vee r))$ and $((r \rightarrow q) \rightarrow p) \equiv$ $(\neg p \rightarrow \neg A)$.
2.a. Construct a first-order theory (set of closed formulae) in the signature $\left\{=^{2}\right\}$, that is true in all infinite interpretations and false in all finite ones.
2.b. Let T_{1} and T_{2} be first-order theories, and let $T_{1} \cup T_{2}$ be an inconsistent theory. Prove that in this case there exists such a formula A, that $T_{1} \vdash A$ and $T_{2} \vdash \neg A$.
3.a. Count the number of ways to get from A to B on the following roadmap:

3.b. Seven schoolchildren were playing a chess tournament in one round (each plays one game with each). Before the lunch break Ivan played 6 games, Anatoly played 5 games, Alex and Dmitry played 3 games each, Simon and Ilya played 2 games each, and Eugene played only one game. Whom did Alex play with before the lunch break?
4.a. Describe the set defined by the following regular expression: $a(a+b)^{*} a$, and construct a deterministic finite automaton for this language.
4.b. Describe the language defined by the following context-free grammar: $S \rightarrow S F, S \rightarrow F F, F \rightarrow a F b$, $F \rightarrow c$.
4.c. Construct a context-free grammar for the following language: $\left\{a^{k} b^{k+m} a^{m} \mid k, m \in \mathbb{N}\right\}$.
5. Write a program in Python that asks the user for a string and answers whether it is a palindrome. (A palindrome is a string that reads the same forwards and backwards.)

Hint: a string in Python is a list.

