Home Assignment \# 2

1. Construct a deterministic finite automata for the language over alphabet $\{c, d\}$ defined by the regular expression $c\left(c^{*} d^{*}\right)^{*} d$.
2. Consider the language over alphabet $\{a, c\}$ consisting of all words of the form $a^{n} c a^{n} c a^{n}$, where $n \geq 1$. Can this language be defined by a regular expression? by a context-free grammar?
3. Construct a context-free grammar for the language over alphabet $\{a, b\}$ consisting of all words of the form $a^{k} b^{m} a^{n}$, where k, m, n are natural numbers (zero is also a natural number!) and $m=k+n$.
4. Transform the following Boolean formula into CNF and apply the resolution method to determine whether it is satisfiable:

$$
(p \rightarrow(q \wedge r)) \wedge(q \rightarrow(r \vee \neg p)) \wedge(q \vee r) \wedge(q \rightarrow p) \wedge((q \vee r) \rightarrow \neg p)
$$

If it is, provide a satisfying assignment.
5. Transform the following Boolean formula into CNF and apply the resolution method to determine whether it is satisfiable:

$$
(p \rightarrow(q \vee r)) \wedge(r \rightarrow s) \wedge(q \rightarrow(r \vee s)) \wedge(r \rightarrow \neg p) \wedge \neg(s \wedge r) \wedge(r \vee p) \wedge(q \rightarrow(s \rightarrow r))
$$

If it is, provide a satisfying assignment.
6. Construct a Boolean formula A, with variables p, q, r, such that $(p \rightarrow A) \equiv(q \rightarrow(\neg p \vee r))$ and $(A \rightarrow p) \equiv((r \rightarrow q) \rightarrow p) .\left(F_{1} \equiv F_{2}\right.$ means that, for any assignment of 0 's and 1's to variables, F_{1} and F_{2} are either both true, or both false.)
7. Let A be a formula constructed from variables p, q, r using only the following logical operations: \vee, \wedge, and \rightarrow (but not negation). Could a CNF for A include the clause ($\neg p \vee \neg q \vee \neg r)$? (If yes, provide an example; if no, explain why.)

Deadline: Wednesday, October 17, 2018.

Please bring your answers in written form to the class on Wednesday, October 17. If you're unable to attend this class, please send a scan/photo to sk@mi-ras.ru

