First-Order Predicate Logic (exercises)

Throughout this exercise sheet, variables (x, y, z, \ldots) range over elements of a non-empty domain M. Predicate symbols' (P, Q, R, \ldots) interpretations range over predicates of M, i.e., functions of the form $\bar{P}: \underbrace{M \times \ldots \times M}_{k} \rightarrow\{0,1\}$, where k is the number of arguments of P.

1. Which of the following formulae are generally true (i.e., true on any M and under any interpretations of predicate symbols)?
(a) $\forall x(P(x) \vee Q(x)) \rightarrow(\forall x P(x)) \vee(\forall x Q(x))$
(b) $\forall x(P(x) \vee Q(x)) \rightarrow(\forall x P(x)) \vee(\exists x Q(x))$
(c) $(\forall x(P(x) \rightarrow Q(x)) \wedge \neg \exists x Q(x)) \rightarrow \forall y \neg P(y)$
(d) $\forall x \exists y R(x, y) \rightarrow \exists y \forall x R(x, y)$
(e) $\exists x(D(x) \rightarrow \forall y D(y))$
2. Which of the following formulae are satisfiable (i.e., true on some M for some interpretation of predicate symbols)?
(a) $\exists x \forall y(Q(x, x) \wedge \neg Q(x, y))$
(b) $\exists x \exists y(P(x) \wedge \neg P(y))$
(c) $\exists x \forall y(Q(x, y) \rightarrow \forall z R(x, y, z))$.
3. Show that the following formula could be true only on an infinite M :

$$
(\forall x \exists y Q(x, y)) \wedge \forall x \forall y \forall z(\neg Q(x, x) \wedge(Q(x, y) \rightarrow(Q(y, z) \rightarrow Q(x, z))))
$$

4. Let $M=\mathbb{N}$ be the set of natural numbers, and let $R(a, b)$ be true if and only if $a<b$. Write a formula $\varphi(u, v)$ with two parameters, u and v, which is true if and only if $v=u+1$.
5. Write a formula using a binary predicate symbol R which expresses the fact that the R relation is:
(a) reflexive
(b) transitive
(c) symmetric
(d) antisymmetric
6. Show that the following formula is true on $M=\{a, b, c\}$ for any interpretation of R :

$$
(\forall x R(x, x)) \wedge \forall x \forall y \forall z(R(x, z) \rightarrow(R(x, y) \vee R(y, z))) \rightarrow \exists u \forall v R(u, v)
$$

