P and NP

- 1. Suppose $P \neq NP$. Could there exist a polynomial-time algorithm for translating a CNF into an equivalent DNF?
- 2. Reducibility. Recall that, for two decision problems, $A \leq_m^P B$ if there exists a polynomial time computable function f such that $x \in A \iff f(x) \in B$, for any x. Consider the following decision problems:
 - INDSET: given a graph G and a number k, decide whether G contains an independent set of k vertices (that is, k vertices, none of which are connected);
 - CLIQUE: given a graph G and a number k, decide whether G contains a clique of k vertices (that is, k vertices, which are connected pairwise);
 - VERTEXCOVER: given a graph G and a number k, decide whether G has a vertex cover of k vertices (that is, a set of k vertices such that every other vertex is connected by an edge to a vertex from this set).

Show that: (a) INDSET \leq_m^P CLIQUE; (b) INDSET \leq_m^P VERTEXCOVER.

- 3. Show that if $NP \neq coNP$, then $P \neq NP$.
- 4. (a) Suppose SAT \in P. Show that there exists an algorithm which checks satisfiability of Boolean formulae and, if a given formula is satisfiable, yields a satisfying assignment.
 - (b) Does the same work for 2-SAT?
- 5. (a) Does there exist an polynomial time algorithm that, given a 2-CNF, yields *all* its satisfying assignments?
 - (b) Does there exists an algorithm for generating all satisfying assignments of a given 2-CNF with polynomial delay? That means that the algorithm should produce the answers (satisfying assignments) gradually, one by one, spending a polynomially bounded amount of time before the first answer and between answers.