Home Assignment \# 2

Deadline: Wednesday, October 16, 2019.

Please bring your answers in written form to the class on Wednesday, October 16. If you're unable to attend this class, please send a scan/photo to sk@mi-ras.ru

1. (a) Translate the following formula into CNF: $(p \rightarrow(q \rightarrow r)) \rightarrow((p \rightarrow \neg r) \rightarrow(p \rightarrow \neg q))$.
(b) Apply the Resolution Algorithm to determine whether this CNF is satisfiable. If yes, write down all its satisfying assignments.
2. Let A be a formula constructed from variables p, q, r using only the following logical operations: \vee, \wedge, and \rightarrow (but not negation). Could a CNF for A include the clause $(\neg p \vee \neg q \vee \neg r)$? (If yes, provide an example; if no, explain why.)
3. Could there exist a graph with the following degrees of vertices: (a) $4,3,3,1$? (b) $4,3,3,2,2$? (c) $5,4,4,2,2,1$? (If yes, provide an example; if no, explain why.)
4. Construct a graph with 10 vertices such that every vertex has degree 3 and any two vertices are connected by a path of not more than 2 edges.
5. A graph has two vertices of degree 1 and several vertices of degree 10. Prove that the vertices of degree 1 are connected by a path in this graph. (Hint: suppose the contrary.)
6. Construct a deterministic Turing machine with polynomial runtime which decides whether a word belongs to the following language: $\left\{w w^{R} \mid w \in\{0,1\}^{*}\right\}$. Here w^{R} means w written in the reverse order: for example, $(00101110)^{R}=01110100$.

HSE UNIVERSITY, MASTER'S PROGRAM 'DATA SCIENCE'
DISCRETE MATHEMATICS, SEPT.-OCT. 2019

Home Assignment \# 2

Deadline: Wednesday, October 16, 2019.
Please bring your answers in written form to the class on Wednesday, October 16. If you're unable to attend this class, please send a scan/photo to sk@mi-ras.ru

1. (a) Translate the following formula into CNF: $(p \rightarrow(q \rightarrow r)) \rightarrow((p \rightarrow \neg r) \rightarrow(p \rightarrow \neg q))$.
(b) Apply the Resolution Algorithm to determine whether this CNF is satisfiable. If yes, write down all its satisfying assignments.
2. Let A be a formula constructed from variables p, q, r using only the following logical operations: \vee, \wedge, and \rightarrow (but not negation). Could a CNF for A include the clause $(\neg p \vee \neg q \vee \neg r)$? (If yes, provide an example; if no, explain why.)
3. Could there exist a graph with the following degrees of vertices: (a) $4,3,3,1$? (b) $4,3,3,2,2$? (c) $5,4,4,2,2,1$? (If yes, provide an example; if no, explain why.)
4. Construct a graph with 10 vertices such that every vertex has degree 3 and any two vertices are connected by a path of not more than 2 edges.
5. A graph has two vertices of degree 1 and several vertices of degree 10 . Prove that the vertices of degree 1 are connected by a path in this graph. (Hint: suppose the contrary.)
6. Construct a deterministic Turing machine with polynomial runtime which decides whether a word belongs to the following language: $\left\{w w^{R} \mid w \in\{0,1\}^{*}\right\}$. Here w^{R} means w written in the reverse order: for example, $(00101110)^{R}=01110100$.
