Polynomial Computations (exercises)

Let \mathfrak{M} be a deterministic Turing machine. For an input word x by $t_{\mathfrak{M}}(x)$ we denote the number of steps \mathfrak{M} performs when running on x (if it never stops, $t_{\mathfrak{M}}(x)=\infty$). By $T_{\mathfrak{M}}(n)$ we denote the maximal value of $t_{\mathfrak{M}}(x)$ where x ranges over words of length n :

$$
T_{\mathfrak{M}}(n)=\max \left\{t_{\mathfrak{M}}(x)| | x \mid=n\right\}
$$

1. Suppose that \mathfrak{M} has m states, k letters in its internal alphabet, and uses at most $s(x)$ memory cells when running on input x. Give an upper bound for $t_{\mathfrak{M}}(x)$, provided it is not ∞ (that is, \mathfrak{M} stops on $x)$.
2. Consider a Turing machine \mathfrak{M}_{2} with two tapes. At each step, it operates on each tape. Show that there exists a one-tape Turing machine \mathfrak{M} that computes the same function as \mathfrak{M}_{2}. Give an upper bound for $T_{\mathfrak{M}}(n)$ in terms of $T_{\mathfrak{M}_{2}}(n)$. Do the same for the more general case of a k-tape machine \mathfrak{M}_{k}.
3. Does there exist an polynomial time algorithm for checking satisfiability of Boolean formulae in Disjunctive Normal Form?
4. Does there exist a polynomial time algorithm which checks whether a given graph is bipartite?
5. Does there exist a polynomial time algorithm which takes a graph and
(a) determines whether it has a Euler cycle;
(b) if the answer is "yes,", returns such a cycle?
6. Does there exist a polynomial time algorithm which takes a bipartite graph and
(a) determines whether it has a perfect matching;
(b) if the answer is "yes," returns one of such matchings?
