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Dependent Clauses

the : (e → t) → e
“if a predicate has exactly one object on which it is true, return
this object” (partial function)

and : t → (t → t), or : t → (t → t)
(written u & v , u ∨ v)

Mapping syntactic types to semantic ones:
noun n 7→ (e → t)
noun phrase np 7→ e
sentence s 7→ t
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The Cut Rule

Γ → A ΓA∆ → C
Γ Π ∆ → C

(corresponds to substitution of λ-terms)



Dependent Clauses

The book fell.
(np / n) n (np \ s) → s
the book fall

the book which fell
(np / n) n (n \ n) /(np \ s) np \ s → np
the book λxe→t .λy e→t .λze .(x(z) & y(z)) fall

Semantic value: theλz .(book(z) & fall(z))
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Dependent Clauses

John loves Mary.
np (np \ s) / np np → s

john love mary

the girl which John loves
(np / n) n (n \ n) /(s / np) np (np \ s) / np → np
the girl λxe→t .λy e→t .λze .(x(z) & y(z)) john love

Semantic value: theλz .(girl(z) & love(z)(john)).

Actually, L ` np (np \ s) / np → s / np (“John loves” reduces to s / np).

Not derivable in AB.
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Dependent Clauses: Limitations

John read Ulysses a month ago.
the book which John read [] a month ago

John sings and loves Mary.
*the girl which John sings and loves
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Coordination

John sings and Mary dances.
np np \ s (s \ s) / s np np \ s → s

john sing and mary dance

Semantic value: sing(john) &dance(mary).



Coordination: Going Polymorphic

John sings or dances.
np np \ s ((np \ s) \(np \ s)) /(np \ s) (np \ s) → s

john sing λxe→t .λy e→t .λze .(x(z) ∨ y(z)) dance

Semantic value: sing(john) ∨ dance(john).



Coordination: Going Polymorphic

In general:

T = T1 → . . .→ (Tk → t)

orT : T → (T → T )

orT = λxT .λyT .λzT1
1 . . . λzTk

k .(xz1 . . . zk ∨ yz1 . . . zk)



Coordination Between Noun Phrases

John and Pete sing.

John or Pete sings.



Coordination Between Noun Phrases: AND

np∗ — plural noun phrase.
np∗ 7→ (e → t) (in other words, P(e))

John and Pete sing.
np (np \ np∗) / np np np∗ \ s → s

john pair pete sing∗

{xe , y e}e→t = λze .(z = x ∨ z = y)
pair = λxe .λy e .{x , y}
sing∗ = λw e→t .∀(e→t)→t λxe .(w(x) ⇒ sing(x)).

This solution needs some first-order logic (∀)... and doesn’t work
for OR.
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Type Raising

L ` p → q /(p \ q)

xσ(p) 7→ λf σ(p)→σ(q).f (x)

Now we can transform x : e into λf e→t .f (x) : (e → t) → t.
Again, this doesn’t work in AB.



Type Raising

L ` p → q /(p \ q)

xσ(p) 7→ λf σ(p)→σ(q).f (x)

Now we can transform x : e into λf e→t .f (x) : (e → t) → t.
Again, this doesn’t work in AB.



Type Raising

L ` p → q /(p \ q)

xσ(p) 7→ λf σ(p)→σ(q).f (x)

Now we can transform x : e into λf e→t .f (x) : (e → t) → t.

Again, this doesn’t work in AB.



Type Raising

L ` p → q /(p \ q)

xσ(p) 7→ λf σ(p)→σ(q).f (x)

Now we can transform x : e into λf e→t .f (x) : (e → t) → t.
Again, this doesn’t work in AB.



Coordination of Noun Phrases: OR

nps = s /(np \ s).

John or Pete sings.
np (nps \ nps) / nps np np \ s

john λx (e→t)→t .λy (e→t)→t .λze→t .(x(z) ∨ y(z)) pete sing

Perform type raising for “John” and “Pete”:
John or Pete
nps (nps \ nps) / nps nps → nps

λf .f (john) λx .λy .λz .(x(z) ∨ y(z)) λf .f (pete)

John or Pete sings.
s /(np \ s) np \ s → s

λf .(f (john) ∨ f (pete)) sing
Final semantic value: sing(john) ∨ sing(pete).
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Gentzen-style Product-Free Lambek Calculus

A → A

AΠ → B
Π → A \B , Π is not empty ΠA → B

Π → B /A
, Π is not empty

Π → A ΓB ∆ → C
Γ Π (A \B) ∆ → C

Π → A ΓB ∆ → C
Γ (B /A) Π ∆ → C

Π → A ΓA∆ → C
Γ Π ∆ → C

(cut)



Cut Elimination

Theorem (Lambek ’58)

Every sequent derivable in L can be derived without using the
(cut) rule.

Proof.
Routine induction on the complexity of the sequent.

Benefits:

I Subformula property

I Decidability (more precisely, the derivability problem for L
belongs to NP)
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Lambek Grammars and Context-Free Grammars

Theorem (Gaifman ’61)

Every context-free language without the empty word can be
generated by an AB-grammar.

Theorem (Pentus ’92)

Every language generated by a Lambek categorial grammar is
context-free.



Greibach Normal Form

A context-free grammar is in Greibach normal from if every rule of
this grammar has one of the following forms:

I A → a

I A → aB

I A → aBC

Theorem (Greibach ’65)

Every context-free language without the empty word can be
generated by a context-free grammar in Greibach normal form.



From Context-Free Grammars to AB-grammars: Proof

N 3 A pA ∈ Pr.

Categorial vocabulary:
A → a 〈pA, a〉
A → aB 〈pA / pB , a〉
A → aBC 〈(pA / pC ) / pB , a〉

H = pS



Web Page

http://www.mi.ras.ru/~sk/lehre/esslli2015


