Lambek Categorial Grammars
Day 2

Stepan Kuznetsov

Steklov Mathematical Institute, RAS
for ESSLLI 15 in Barcelona

August 4, 2015

Dependent Clauses

THE: (e > t) — e
“if a predicate has exactly one object on which it is true, return
this object” (partial function)

Dependent Clauses

THE: (e > t) — e
“if a predicate has exactly one object on which it is true, return
this object” (partial function)

AND:t — (t = t), OR: t — (t — t)
(written u& v, uVv)

Dependent Clauses

THE: (e > t) — e
“if a predicate has exactly one object on which it is true, return
this object” (partial function)

AND:t — (t = t), OR: t — (t — t)
(written u& v, uVv)

Mapping syntactic types to semantic ones:
noun n— (e —t)
noun phrase np—e
sentence St

The Cut Rule

r-A TAA—=C

MA—C

(corresponds to substitution of A-terms)

Dependent Clauses

The book fell.

(np/n) — n (np\s) —s
THE BOOK FALL

Dependent Clauses

The book fell.

(np/n) — n (np\s) —s
THE BOOK FALL

the book which fell

(np/n) n (n\n) /(np\5) mp\s — np
THE BOOK Ax®7PAye 7t Az¢(x(z)& y(z)) FALL

Semantic value: THE A\z.(BOOK(z) & FALL(z))

Dependent Clauses

John loves Mary.

np (np\s)/np np —s
JOHN LOVE MARY

Dependent Clauses

John loves Mary.
np (np\s)/np np —s
JOHN LOVE MARY
the girl which John loves
(np/n) n (n\n) /(s / np) np (np\s)/np — np
THE GIRL Ax® 7t Ay® 7t Az°.(x(z)& y(z)) JOHN LOVE

Semantic value: THE Az.(GIRL(z) & LOVE(z)(JOHN)).

Dependent Clauses

John loves Mary.
np (np\s)/np np —s
JOHN LOVE MARY
the girl which John loves
(np/n) n (n\n) /(s / np) np (np\s)/np — np
THE GIRL Ax® 7t Ay® 7t Az°.(x(z)& y(z)) JOHN LOVE

Semantic value: THE Az.(GIRL(z) & LOVE(z)(JOHN)).

Actually, Lt np (np\'s) /np — s/ np (“John loves” reduces to s/ np).
Not derivable in AB.

Dependent Clauses: Limitations

John read Ulysses a month ago.
the book which John read [] a month ago

Dependent Clauses: Limitations

John read Ulysses a month ago.
the book which John read [] a month ago

John sings and loves Mary.
*the girl which John sings and loves

Coordination

John sings and Mary dances.
np np\s (s\s)/s np np\s —s
JOHN SING AND MARY DANCE

Semantic value: SING(JOHN) & DANCE(MARY).

Coordination: Going Polymorphic

John sings or dances.

np np\s ((np\S)\(np\)(/(np\) (np\s) —s

JOHN SING Ax®7EAye 7t Az°(x(z) Vy(z)) DANCE

Semantic value: SING(JOHN) V DANCE(JOHN).

Coordination: Going Polymorphic

In general:

T=T1— ... (Txk—>1t)

oer: T = (T —=T)

ot =)\XT.)\yT.)\lel ..)\zlz—".(le vz NV yzy ... zg)

Coordination Between Noun Phrases

John and Pete sing.

John or Pete sings.

Coordination Between Noun Phrases: AND

np* — plural noun phrase.
np* — (e — t) (in other words, P(e))

John and Pete sing.
np (np\np*)/np np np*\s —s
JOHN PAIR PETE SING*

{xe,ye}e7t =Az8(z=xVz=y)
PAIR = Ax®\y®.{x,y}
SING* = Awe 7t W(E7D)=2 \xe (w(x) = sING(X)).

Coordination Between Noun Phrases: AND

np* — plural noun phrase.
np* — (e — t) (in other words, P(e))

John and Pete sing.
np (np\np*)/np np np*\s —s
JOHN PAIR PETE SING*

{xe,ye}e7t =Az8(z=xVz=y)
PAIR = Ax®\y®.{x,y}
SING* = Awe 7t W(E7D)=2 \xe (w(x) = sING(X)).

This solution needs some first-order logic (V)...

Coordination Between Noun Phrases: AND

np* — plural noun phrase.
np* — (e — t) (in other words, P(e))

John and Pete sing.
np (np\np*)/np np np*\s —s
JOHN PAIR PETE SING*

{xe,ye}e7t =Az8(z=xVz=y)
PAIR = Ax®\y®.{x,y}
SING* = Awe 7t W(E7D)=2 \xe (w(x) = sING(X)).

This solution needs some first-order logic (V)... and doesn't work
for OR.

Type Raising

Ltp—q/(p\q)

Type Raising

Ltp—q/(p\q)

xo(P))\fU(P)—W(q).f(X)

Type Raising

Ltp—q/(p\q)

xo(P))\fU(P)—W(q)_f(X)

Now we can transform x : e into A\f¢7t.f(x) : (e = t) — t.

Type Raising

Ltp—q/(p\q)

xo(P))\fU(P)—W(q)_f(X)

Now we can transform x : e into Af¢71.f(x) : (e — t) — t.
Again, this doesn’'t work in AB.

Coordination of Noun Phrases: OR

np* = s /(np\s).

John or Pete sings.
np (np*\ np®) / np® np np\s
JOHN Ax(e2t)=t \y(e=t)=t N\7e=t (x(2)V y(2)) PETE SING

Coordination of Noun Phrases: OR

mp* = s /(np\s).
John or Pete sings.

np (np*\ np®) / np® np np\s
JOHN Ax(e2t)=t \y(e=t)=t N\7e=t (x(2)V y(2)) PETE SING

Perform type raising for “John” and “Pete”:

John or Pete
np® (np® \ np®) / np® np® — np®
Af.f(JOHN) Ax.Ay.Az.(x(z) Vy(z)) Af.f(PETE)

Coordination of Noun Phrases: OR

mp* = s /(np\s).
John or Pete sings.

np (np*\ np®) / np® np np\s
JOHN Ax(e2t)=t \y(e=t)=t N\7e=t (x(2)V y(2)) PETE SING

Perform type raising for “John” and “Pete”:

John or Pete
np® (np® \ np®) / np® np® — np®
Af.f(JOHN) Ax.Ay.Az.(x(z) Vy(z)) Af.f(PETE)
John or Pete sings.
s/(np\'s) np\s —s

A .(f(JOBN) V f(PETE)) SING
Final semantic value: SING(JOHN) V SING(PETE).

Gentzen-style Product-Free Lambek Calculus

All— B
n— A\B

MA— B

, 1 is not empty m

, [is not empty

MmM—-A TBA—=C M—-A TBA—-C
rM(A\B)A — C rB/ANA—C

N—-A TAA—>C (cut)
MAa-—=«C

Cut Elimination

Theorem (Lambek '58)

Every sequent derivable in L can be derived without using the
(cut) rule.

Cut Elimination

Theorem (Lambek '58)

Every sequent derivable in L can be derived without using the
(cut) rule.

Proof.

Routine induction on the complexity of the sequent.

Cut Elimination

Theorem (Lambek '58)

Every sequent derivable in L can be derived without using the
(cut) rule.

Proof.

Routine induction on the complexity of the sequent.

Benefits:
» Subformula property

» Decidability (more precisely, the derivability problem for L
belongs to NP)

Lambek Grammars and Context-Free Grammars

Theorem (Gaifman '61)

Every context-free language without the empty word can be
generated by an AB-grammar.

Theorem (Pentus '92)

Every language generated by a Lambek categorial grammar is
context-free.

Greibach Normal Form

A context-free grammar is in Greibach normal from if every rule of
this grammar has one of the following forms:

» A= a

» A— aB

» A— aBC

Theorem (Greibach '65)

Every context-free language without the empty word can be
generated by a context-free grammar in Greibach normal form.

From Context-Free Grammars to AB-grammars: Proof

N> A~ psy € Pr.

Categorial vocabulary:
A—a (pa, a)
A— aB <pA/pB, a>
A—aBC ((pa/pc)/ps;a)

H = ps

Web Page

http://www.mi.ras.ru/"sk/lehre/ess11i2015

