Lambek Categorial Grammars Day 3

Stepan Kuznetsov

Steklov Mathematical Institute, RAS for ESSLLI '15 in Barcelona

August 5, 2015

Gentzen-style Lambek Calculus

$$A \rightarrow A$$

$$\frac{A\,\Pi\to B}{\Pi\to A\setminus B} \ , \ \Pi \ \text{is not empty} \qquad \frac{\Pi\,A\to B}{\Pi\to B\,/\,A} \ , \ \Pi \ \text{is not empty}$$

$$\frac{\Pi\to A \quad \Gamma\,B\,\Delta\to C}{\Gamma\,\Pi\,(A\setminus B)\,\Delta\to C} \qquad \frac{\Pi\to A \quad \Gamma\,B\,\Delta\to C}{\Gamma\,(B\,/\,A)\,\Pi\,\Delta\to C}$$

Gentzen-style Lambek Calculus

$$A \rightarrow A$$

$$\frac{A\,\Pi \to B}{\Pi \to A \setminus B} \text{ , } \Pi \text{ is not empty} \qquad \frac{\Pi\,A \to B}{\Pi \to B \,/\,A} \text{ , } \Pi \text{ is not empty}$$

$$\frac{\Pi \to A \quad \Gamma\,B\,\Delta \to C}{\Gamma\,\Pi\,(A \setminus B)\,\Delta \to C} \qquad \frac{\Pi \to A \quad \Gamma\,B\,\Delta \to C}{\Gamma\,(B \,/\,A)\,\Pi\,\Delta \to C}$$

$$\frac{\Gamma\,A\,B\,\Delta \to C}{\Gamma\,(A \cdot B)\,\Delta \to C} \qquad \frac{\Gamma \to A \quad \Delta \to B}{\Gamma\,\Delta \to A \cdot B}$$

Gentzen-style Lambek Calculus

$$A \rightarrow A$$

$$\frac{A\,\Pi \to B}{\Pi \to A \setminus B} \text{ , } \Pi \text{ is not empty} \qquad \frac{\Pi\,A \to B}{\Pi \to B \mid A} \text{ , } \Pi \text{ is not empty}$$

$$\frac{\Pi \to A \quad \Gamma\,B\,\Delta \to C}{\Gamma\,\Pi\,(A \setminus B)\,\Delta \to C} \qquad \frac{\Pi \to A \quad \Gamma\,B\,\Delta \to C}{\Gamma\,(B \mid A)\,\Pi\,\Delta \to C}$$

$$\frac{\Gamma\,A\,B\,\Delta \to C}{\Gamma\,(A \cdot B)\,\Delta \to C} \qquad \frac{\Gamma \to A \quad \Delta \to B}{\Gamma\,\Delta \to A \cdot B}$$

$$\frac{\Pi \to A \quad \Gamma A \Delta \to C}{\Gamma \Pi \Delta \to C} \text{ (cut)}$$

Cut Elimination

Theorem (Lambek '58)

Every sequent derivable in L can be derived without using the (cut) rule.

Cut Elimination

Theorem (Lambek '58)

Every sequent derivable in L can be derived without using the (cut) rule.

Proof.

Routine induction on the complexity of the sequent.

Lambek Grammars and Context-Free Grammars

Theorem (Gaifman '61)

Every context-free language without the empty word can be generated by an AB-grammar.

Theorem (Pentus '92)

Every language generated by a Lambek categorial grammar is context-free.

Greibach Normal Form

A context-free grammar is in Greibach normal from if every rule of this grammar has one of the following forms:

- ightharpoonup A
 ightharpoonup a
- ightharpoonup A
 ightarrow aB
- ightharpoonup A
 ightharpoonup aBC

Theorem (Greibach '65)

Every context-free language without the empty word can be generated by a context-free grammar in Greibach normal form.

From Context-Free Grammars to AB-grammars: Proof

$$N \ni A \leadsto p_A \in \Pr$$
.

Categorial vocabulary:

$$A \rightarrow a \qquad \langle p_A, a \rangle$$

 $A \rightarrow aB \qquad \langle p_A / p_B, a \rangle$
 $A \rightarrow aBC \qquad \langle (p_A / p_C) / p_B, a \rangle$

$$H = p_S$$

Pentus' Theorem Proof: Outline

- ► Interpolation lemma
- ▶ Free group interpretation, thin sequents
- ▶ BR-lemma
- ► Translating derivations into Lcut

Complexity Counters

 $||A||_p$ is the number of occurrences of p in A.

$$\|A\|=\sum_{p\in\Pr}\|A\|_p$$

Interpolation Lemma

Theorem (Roorda '91)

Let $L \vdash \Phi \Theta \Psi \to C$, where Θ is not empty. Then there exists such a type E (the interpolant) that

- ▶ $L \vdash \Theta \rightarrow E$;
- ▶ $L \vdash \Phi E \Psi \rightarrow C$:
- ▶ $||E||_p \le \min\{||\Theta||_p, ||\Phi \Psi C||_p\}$ for every $p \in \Pr$.

Definition

A sequent $\Gamma \to C$ is called *thin* if $\|\Gamma C\|_p \le 2$ for every $p \in \Pr$.

Definition

A sequent $\Gamma \to C$ is called *thin* if $\|\Gamma C\|_p \le 2$ for every $p \in \Pr$.

Primitive type substitution: $\phi \colon \Pr \to \Pr$.

$$\phi(A \cdot B) = \phi(A) \cdot \phi(B);$$

$$\phi(A \setminus B) = \phi(A) \setminus \phi(B);$$

$$\phi(B \setminus A) = \phi(B) \setminus \phi(A)$$

$$\phi(B/A) = \phi(B)/\phi(A).$$

$$\phi(A_1 \ldots A_k \to B) = \phi(A_1) \ldots \phi(A_k) \to \phi(B).$$

Definition

A sequent $\Gamma \to C$ is called *thin* if $\|\Gamma C\|_p \le 2$ for every $p \in \Pr$.

Primitive type substitution: $\phi \colon \Pr \to \Pr$.

$$\phi(A \cdot B) = \phi(A) \cdot \phi(B);
\phi(A \setminus B) = \phi(A) \setminus \phi(B);
\phi(B / A) = \phi(B) / \phi(A).
\phi(A_1 ... A_k \to B) = \phi(A_1) ... \phi(A_k) \to \phi(B).$$

$$\varphi(A_1 \dots A_k \to B) = \varphi(A_1) \dots \varphi(A_k) \to \varphi(B)$$

Lemma

If $L \vdash \Pi \rightarrow C$, then $L \vdash \phi(\Pi \rightarrow C)$ for any primitive type substitution ϕ .

Definition

A sequent $\Gamma \to C$ is called *thin* if $\|\Gamma C\|_p \le 2$ for every $p \in \Pr$.

Primitive type substitution: $\phi \colon \Pr \to \Pr$.

$$\phi(A \cdot B) = \phi(A) \cdot \phi(B);
\phi(A \setminus B) = \phi(A) \setminus \phi(B);
\phi(B / A) = \phi(B) / \phi(A).
\phi(A_1 ... A_k \to B) = \phi(A_1) ... \phi(A_k) \to \phi(B).$$

Lemma

If $L \vdash \Pi \rightarrow C$, then $L \vdash \phi(\Pi \rightarrow C)$ for any primitive type substitution ϕ .

Lemma

If $L \vdash \Pi \rightarrow C$, then there exist such $\Pi' \rightarrow C'$ and ϕ that $\Pi' \rightarrow C'$ is derivable and thin and $\Pi \rightarrow C = \phi(\Pi' \rightarrow C')$.

Free Group Interpretation

Let FG be the free group generated by Pr. Then define $[\![A]\!] \in FG$ for every type A.

- ▶ $\llbracket p \rrbracket = p \text{ for } p \in \Pr$;
- ▶ $[A \cdot B] = [A][B]$;
- $[A \setminus B] = [A]^{-1}[B];$
- $| [B/A] = [B][A]^{-1};$
- $[\![A_1 \ldots A_n]\!] = [\![A_1]\!] \ldots [\![A_n]\!].$

Free Group Interpretation

Let FG be the free group generated by Pr. Then define $[\![A]\!] \in FG$ for every type A.

- ▶ $\llbracket p \rrbracket = p \text{ for } p \in \Pr$;
- ▶ $[A \cdot B] = [A][B]$;
- $[A \setminus B] = [A]^{-1}[B];$
- $| [B/A] = [B][A]^{-1};$
- $[A_1 ... A_n] = [A_1] ... [A_n].$

Lemma

If
$$L \vdash \Gamma \rightarrow C$$
, then $\llbracket \Gamma \rrbracket = \llbracket C \rrbracket$.

Interpolation for Thin Sequents

Lemma

Let $L \vdash \Phi \Theta \Psi \rightarrow C$, where Θ is not empty and the whole sequent is thin. Then there exists such a type E that

- ▶ $L \vdash \Theta \rightarrow E$ and $L \vdash \Phi E \Psi \rightarrow C$;
- ▶ $\Theta \rightarrow E$ and $\Phi E \Psi \rightarrow C$ are thin sequents;
- ▶ $||E|| = ||[\Theta]|$ (where |u| for $u \in FG$ is the length of u as a word after all cancellations).

The BR-lemma

Lemma

Let $u_1, \ldots, u_n \in \mathrm{FG}$, $n \geq 2$, and $u_1 \ldots u_n = \mathbf{1}_{\mathrm{FG}}$. The there exists such k < n that $|u_k u_{k+1}| \leq \max\{|u_k|, |u_{k+1}|\}$.

$$\mathrm{Tp}_m = \{A \in \mathrm{Tp} \mid \|A\| \le m\}$$

Lcut_m

$$\mathrm{Tp}_m = \{ A \in \mathrm{Tp} \mid ||A|| \le m \}$$

Axioms:

$$A \rightarrow B$$
, $A, B \in \operatorname{Tp}_m$
 $AB \rightarrow C$, $A, B, C \in \operatorname{Tp}_m$

$$\mathrm{Tp}_m = \{A \in \mathrm{Tp} \mid \|A\| \le m\}$$

Axioms:

 $A \rightarrow B$, $A, B \in \operatorname{Tp}_m$ $AB \rightarrow C$, $A, B, C \in \operatorname{Tp}_m$

Rules: only (cut).

$$\mathrm{Tp}_m = \{ A \in \mathrm{Tp} \mid ||A|| \le m \}$$

Axioms:

$$A \rightarrow B$$
, $A, B \in \operatorname{Tp}_m$
 $AB \rightarrow C$, $A, B, C \in \operatorname{Tp}_m$

Rules: only (cut).

Lemma

If $\Gamma \to C$ is derivable in L, $\Gamma \in \mathrm{Tp}_m^+$, and $C \in \mathrm{Tp}_m$, then this sequent is derivable in Lcut_m .

$$\mathrm{Tp}_m = \{ A \in \mathrm{Tp} \mid ||A|| \le m \}$$

Axioms:

$$A \rightarrow B$$
, $A, B \in \operatorname{Tp}_m$
 $AB \rightarrow C$, $A, B, C \in \operatorname{Tp}_m$

Rules: only (cut).

Lemma

If $\Gamma \to C$ is derivable in L, $\Gamma \in \mathrm{Tp}_m^+$, and $C \in \mathrm{Tp}_m$, then this sequent is derivable in Lcut_m .

 $Lcut_m$ -grammars are context-free!

One More Translation of Context-Free Grammars to Lambek Grammars

(Buszkowski '93)

Translates a context-free grammar in Chomsky normal form into a Lambek grammar.

One More Translation of Context-Free Grammars to Lambek Grammars

(Buszkowski '93)

Translates a context-free grammar in Chomsky normal form into a Lambek grammar.

Let $N \subset \Pr$.

 $N \ni t \mapsto I(t) \subset \mathrm{Tp}$:

- $ightharpoonup t \in I(t);$
- ▶ if $p \Rightarrow qr$ is a rule of the grammar, then $(q \setminus p) \in I(t)$;
- ▶ if $t \in N$ and $p \Rightarrow qr$ is a rule of the grammar, then $(q \setminus p)/(t \setminus r) \in I(t)$.

One More Translation of Context-Free Grammars to Lambek Grammars

(Buszkowski '93)

Translates a context-free grammar in Chomsky normal form into a Lambek grammar.

Let $N \subset \Pr$.

 $N \ni t \mapsto I(t) \subset \mathrm{Tp}$:

- $ightharpoonup t \in I(t);$
- ▶ if $p \Rightarrow qr$ is a rule of the grammar, then $(q \setminus p) \in I(t)$;
- ▶ if $t \in N$ and $p \Rightarrow qr$ is a rule of the grammar, then $(q \setminus p)/(t \setminus r) \in I(t)$.

 $\mathcal{D} = \{ \langle A, a \rangle \mid t \Rightarrow a \text{ is a rule of the grammar and } A \in I(t) \}.$ H = s.

Kanazawa & Salvati '13: if a context-free grammar does not contain ϵ -rules ($A \Rightarrow$) and cyclic rules ($A \Rightarrow B$), then there exists a strongly equivalent Lambek grammar.

Kanazawa & Salvati '13: if a context-free grammar does not contain ϵ -rules ($A \Rightarrow$) and cyclic rules ($A \Rightarrow B$), then there exists a strongly equivalent Lambek grammar. (This goes via Greibach normal form.)

Kanazawa & Salvati '13: if a context-free grammar does not contain ϵ -rules ($A \Rightarrow$) and cyclic rules ($A \Rightarrow B$), then there exists a strongly equivalent Lambek grammar. (This goes via Greibach normal form.)

Otherwise the context-free grammar could assign an infinite number of semantic values to a word, which is impossible for Lambek grammars.

Kanazawa & Salvati '13: if a context-free grammar does not contain ϵ -rules ($A \Rightarrow$) and cyclic rules ($A \Rightarrow B$), then there exists a strongly equivalent Lambek grammar. (This goes via Greibach normal form.)

Otherwise the context-free grammar could assign an infinite number of semantic values to a word, which is impossible for Lambek grammars.

Pentus' construction keeps semantic values. (Kanazawa & Salvati '13)

Kanazawa & Salvati '13: if a context-free grammar does not contain ϵ -rules ($A \Rightarrow$) and cyclic rules ($A \Rightarrow B$), then there exists a strongly equivalent Lambek grammar. (This goes via Greibach normal form.)

Otherwise the context-free grammar could assign an infinite number of semantic values to a word, which is impossible for Lambek grammars.

Pentus' construction keeps semantic values. (Kanazawa & Salvati '13)

Buszkowski's construction also can be enriched with semantics.