Lambek Categorial Grammars Day 4

Stepan Kuznetsov

Steklov Mathematical Institute, RAS for ESSLLI '15 in Barcelona

August 6, 2015

Gentzen-style Lambek Calculus

$$A \rightarrow A$$

$$\frac{A\,\Pi\to B}{\Pi\to A\,\backslash\, B} \;,\; \Pi \; \text{is not empty} \qquad \frac{\Pi\,A\to B}{\Pi\to B\,/\, A} \;,\; \Pi \; \text{is not empty}$$

$$\frac{\Pi\to A \quad \Gamma\,B\,\Delta\to C}{\Gamma\,\Pi\,(A\,\backslash\, B)\,\Delta\to C} \qquad \frac{\Pi\to A \quad \Gamma\,B\,\Delta\to C}{\Gamma\,(B\,/\, A)\,\Pi\,\Delta\to C}$$

$$\frac{\Gamma\,A\,B\,\Delta\to C}{\Gamma\,(A\cdot B)\,\Delta\to C} \qquad \frac{\Gamma\to A \quad \Delta\to B}{\Gamma\,\Delta\to A\cdot B}$$

Gentzen-style Lambek Calculus

$$A \rightarrow A$$

$$\frac{A\,\Pi\to B}{\Pi\to A\setminus B} \text{ , } \Pi \text{ is not empty } \frac{\Pi\,A\to B}{\Pi\to B\,/\,A} \text{ , } \Pi \text{ is not empty}$$

$$\frac{\Pi\to A\quad\Gamma\,B\,\Delta\to C}{\Gamma\,\Pi\,(A\setminus B)\,\Delta\to C} \frac{\Pi\to A\quad\Gamma\,B\,\Delta\to C}{\Gamma\,(B\,/\,A)\,\Pi\,\Delta\to C}$$

$$\frac{\Gamma\,A\,B\,\Delta\to C}{\Gamma\,(A\cdot B)\,\Delta\to C} \frac{\Gamma\to A\quad\Delta\to B}{\Gamma\,\Delta\to A\cdot B}$$

$$\frac{\Pi\to A\quad\Gamma\,A\,\Delta\to C}{\Gamma\,\Pi\,\Delta\to C} \text{ (cut)}$$

L-models

$$w \colon \operatorname{Tp} \to \mathcal{P}(\Sigma^+)$$

$$w(A \cdot B) = w(A) \cdot w(B) = \{uv \mid u \in w(A), v \in w(B)\}$$

$$w(A \setminus B) = w(A) \setminus w(B) = \{u \in \Sigma^+ \mid (\forall v \in w(A)) \ vu \in w(B)\}$$

$$w(B \mid A) = w(B) \mid w(A) = \{u \in \Sigma^+ \mid (\forall v \in w(A)) \ uv \in w(B)\}$$

$$w(A_1 \dots A_n) = w(A_1) \dots w(A_n)$$

L-models

$$w: \operatorname{Tp} \to \mathcal{P}(\Sigma^{+})$$

$$w(A \cdot B) = w(A) \cdot w(B) = \{uv \mid u \in w(A), v \in w(B)\}$$

$$w(A \setminus B) = w(A) \setminus w(B) = \{u \in \Sigma^{+} \mid (\forall v \in w(A)) vu \in w(B)\}$$

$$w(B / A) = w(B) / w(A) = \{u \in \Sigma^{+} \mid (\forall v \in w(A)) uv \in w(B)\}$$

$$w(A_{1} \dots A_{n}) = w(A_{1}) \cdot \dots \cdot w(A_{n})$$

$$\Sigma, w \models \Gamma \to C \iff w(\Gamma) \subseteq w(C).$$

Completeness Theorem

Theorem (Pentus '95)
$$L \vdash \Gamma \to C \iff (\forall \Sigma, w) \Sigma, w \vDash \Gamma \to C.$$

Completeness Proof in the Product-Free Case

(Buszkowski)

$$\Sigma = \mathrm{Tp}_{m}$$

$$w(A) = \{\Gamma \mid L \vdash \Gamma \to A\}$$

Doesn't Work with the Product

$$(p \cdot q) \in w(p \cdot q)$$

 $(p \cdot q) \notin w(p) \cdot w(q)$

Open Problem

Formulate an L-complete extension of \boldsymbol{L} with the Kleene iteration (as a unary connective).

More on Grammars

▶ The trick to add the empty word: $\mathcal{G}[p_S := ((r \setminus r) \setminus ((s \setminus s) \setminus q) \setminus q]$, where \mathcal{G} comes from Greibach normal form in which S does not appear in right-hand sides of the rules.

More on Grammars

- ▶ The trick to add the empty word: $\mathcal{G}[p_S := ((r \setminus r) \setminus ((s \setminus s) \setminus q) \setminus q]$, where \mathcal{G} comes from Greibach normal form in which S does not appear in right-hand sides of the rules.
- ▶ Lambek grammars with one primitive type: $\mathcal{G}[p_k := \left(p^{k+1} \cdot \left((p \setminus (p \setminus p)) \setminus p \right) \cdot p^{n-k+1} \right) \setminus p]_{k=1}^n.$

More on Grammars

- ▶ The trick to add the empty word: $\mathcal{G}[p_S := ((r \setminus r) \setminus ((s \setminus s) \setminus q) \setminus q]$, where \mathcal{G} comes from Greibach normal form in which S does not appear in right-hand sides of the rules.
- Lambek grammars with one primitive type: $\mathcal{G}[p_k := \left(p^{k+1} \cdot \left((p \setminus (p \setminus p)) \setminus p \right) \cdot p^{n-k+1} \right) \setminus p]_{k=1}^n.$
- ▶ (Safiullin '07) Every context-free language is generated by a Lambek grammar which assigns a unique type to each letter.

NP-completeness

Theorem (Pentus '03)

The derivability problem for L is NP-complete.

Reduce ${\rm SAT}$ to derivability in $L. \label{eq:loss_loss}$

Reduce SAT to derivability in L.

Let $c_1 \wedge \ldots \wedge c_m$ be a Boolean formula in conjunctive normal form.

Reduce SAT to derivability in L.

- ▶ Let $c_1 \wedge ... \wedge c_m$ be a Boolean formula in conjunctive normal form.
- ▶ Construct such formulae $E_1(t_1), \ldots, E_n(t_n)$, and G, that $L \vdash E_1(t_1) \ldots E_n(t_n) \to G$ iff $\langle t_1, \ldots, t_n \rangle$ is a satisfying assignment for $c_1 \land \cdots \land c_m$.

Reduce SAT to derivability in L.

- Let $c_1 \wedge \ldots \wedge c_m$ be a Boolean formula in conjunctive normal form.
- ▶ Construct such formulae $E_1(t_1), \ldots, E_n(t_n)$, and G, that $L \vdash E_1(t_1) \ldots E_n(t_n) \to G$ iff $\langle t_1, \ldots, t_n \rangle$ is a satisfying assignment for $c_1 \land \cdots \land c_m$.
- ▶ Construct such formulae F_1, \ldots, F_n , that $L \vdash F_i \rightarrow E_i(t)$ $(t \in \{0,1\})$ and if $L \vdash F_1 \ldots F_n \rightarrow G$, then $L \vdash E_1(t_1) \ldots E_n(t_n) \rightarrow G$ for some t_1, \ldots, t_n .

Reduce SAT to derivability in L.

- Let $c_1 \wedge \ldots \wedge c_m$ be a Boolean formula in conjunctive normal form.
- ▶ Construct such formulae $E_1(t_1), \ldots, E_n(t_n)$, and G, that $L \vdash E_1(t_1) \ldots E_n(t_n) \to G$ iff $\langle t_1, \ldots, t_n \rangle$ is a satisfying assignment for $c_1 \land \cdots \land c_m$.
- ▶ Construct such formulae F_1, \ldots, F_n , that $L \vdash F_i \rightarrow E_i(t)$ $(t \in \{0,1\})$ and if $L \vdash F_1 \ldots F_n \rightarrow G$, then $L \vdash E_1(t_1) \ldots E_n(t_n) \rightarrow G$ for some t_1, \ldots, t_n .
- ▶ L \vdash $F_1 \dots F_n \rightarrow G$ iff $c_1 \land \dots \land c_n$ is satisfiable.

Reduce SAT to derivability in L.

- Let $c_1 \wedge \ldots \wedge c_m$ be a Boolean formula in conjunctive normal form.
- ▶ Construct such formulae $E_1(t_1), \ldots, E_n(t_n)$, and G, that $L \vdash E_1(t_1) \ldots E_n(t_n) \to G$ iff $\langle t_1, \ldots, t_n \rangle$ is a satisfying assignment for $c_1 \land \cdots \land c_m$.
- ▶ Construct such formulae F_1, \ldots, F_n , that $L \vdash F_i \rightarrow E_i(t)$ $(t \in \{0,1\})$ and if $L \vdash F_1 \ldots F_n \rightarrow G$, then $L \vdash E_1(t_1) \ldots E_n(t_n) \rightarrow G$ for some t_1, \ldots, t_n .
- ▶ L \vdash $F_1 \dots F_n \rightarrow G$ iff $c_1 \land \dots \land c_n$ is satisfiable.

[M. Pentus. Complexity of the Lambek Calculus and Its Fragments. Proc. AiML '10]

NP-complete Fragments

Theorem (Savateev '08-'09) Derivability problems for $L(\setminus, \setminus)$ and $L(\cdot, \setminus)$ are NP-complete.

Complexity of Fragments of the Lambek Calculus

	L	L^*	$L(\rho_1)$	$\mid L^*(p_1) \mid$
$\overline{}, \setminus, /$	NP	NP	NP	NP
$\overline{}$, \	NP	NP	NP	NP
$\overline{}$	NP	NP	NP	NP
\	Р	Р	Р	Р

$$Atn = \{ p^{(i)} \mid p \in Pr, i \in \mathbb{N} \}.$$

Translate the given sequent into a string of elements of Atn .

$$Atn = \{ p^{(i)} \mid p \in Pr, i \in \mathbb{N} \}.$$

Translate the given sequent into a string of elements of Atn.

$$\gamma, \bar{\gamma} \colon \mathrm{Tp}(\backslash) \to \mathrm{Atn}^+.$$

$$\gamma(p) = p^{(1)} \qquad \bar{\gamma}(p) = p^{(2)}$$
$$\gamma(A \setminus B) = \bar{\gamma}(A)\gamma(B) \quad \bar{\gamma}(A \setminus B) = \bar{\gamma}(B)(\gamma(A))^{+2}$$

Translate $A_1 \dots A_n \to B$ into $\gamma(A_1) \dots \gamma(A_n) \bar{\gamma}(B)$.

$$Atn = \{ p^{(i)} \mid p \in Pr, i \in \mathbb{N} \}.$$

Translate the given sequent into a string of elements of Atn.

$$\gamma, \bar{\gamma} \colon \mathrm{Tp}(\backslash) \to \mathrm{Atn}^+.$$

$$\gamma(p) = p^{(1)}$$
 $\bar{\gamma}(p) = p^{(2)}$
 $\gamma(A \setminus B) = \bar{\gamma}(A)\gamma(B)$ $\bar{\gamma}(A \setminus B) = \bar{\gamma}(B)(\gamma(A))^{+2}$

Translate $A_1 \dots A_n \to B$ into $\gamma(A_1) \dots \gamma(A_n) \bar{\gamma}(B)$.

This translation is injective.

$$Atn = \{ p^{(i)} \mid p \in Pr, i \in \mathbb{N} \}.$$

Translate the given sequent into a string of elements of $\mathrm{Atn.}$

$$\gamma, \bar{\gamma} \colon \mathrm{Tp}(\backslash) \to \mathrm{Atn}^+.$$

$$\gamma(p) = p^{(1)}$$
 $\bar{\gamma}(p) = p^{(2)}$
 $\gamma(A \setminus B) = \bar{\gamma}(A)\gamma(B)$ $\bar{\gamma}(A \setminus B) = \bar{\gamma}(B)(\gamma(A))^{+2}$

Translate $A_1 \dots A_n \to B$ into $\gamma(A_1) \dots \gamma(A_n) \bar{\gamma}(B)$.

This translation is injective.

Example.
$$(r \setminus p) ((s \setminus p) \setminus t) \to (s \setminus r) \setminus t$$
. $r^{(2)}p^{(1)}p^{(2)}s^{(3)}t^{(1)}t^{(2)}s^{(4)}r^{(3)}$

A sequent is derivable in $L(\)$ iff on its translation to Atn^+ there exists such pairing of letters, that

- ▶ a pair consists of $p^{(i)}$ and $p^{(i+1)}$, and $p^{(i)}$ stays to the left;
- the links connecting pairs can be drawn in the upper semiplane without intersections;
- ▶ if the superscript of the left atom in the pair is even, then there is an atom with a less superscript between the elements of the pair.

Using Proof Nets

▶ Making easier to obtain proof-theoretical results.

Using Proof Nets

- Making easier to obtain proof-theoretical results.
- For L(\): polynomial decision procedure (dynamic programming à la CYK).

Using Proof Nets

- Making easier to obtain proof-theoretical results.
- For L(\): polynomial decision procedure (dynamic programming à la CYK).
- ... and polynomial translation into context-free grammars.