Gödel - Löb Provability Logic

Logic II, University of Pennsylvania, Spring 2017

GL in a Hilbert-style Form

Language: $p, q, r, \ldots ; \wedge, \vee, \rightarrow, \perp, \square$.
Axioms:

- Classical propositional calculus.
- $\square(A \rightarrow B) \rightarrow(\square A \rightarrow \square B) \quad$ (normality).
- $\square(\square A \rightarrow A) \rightarrow \square A \quad$ (Löb).

Inference rules:

$$
\frac{A \quad A \rightarrow B}{B}(\mathrm{MP}) \quad \frac{A}{\square A}(\mathrm{Nec})
$$

GL in a Hilbert-style Form

Language: $p, q, r, \ldots ; \wedge, \vee, \rightarrow, \perp, \square$.
Axioms:

- Classical propositional calculus.
- $\square(A \rightarrow B) \rightarrow(\square A \rightarrow \square B) \quad$ (normality).
- $\square(\square A \rightarrow A) \rightarrow \square A \quad$ (Löb).

Inference rules:

$$
\frac{A \quad A \rightarrow B}{B}(\mathrm{MP}) \quad \frac{A}{\square A}(\mathrm{Nec})
$$

Lemma
$\mathbf{G L} \vdash \square A \rightarrow \square \square A$ (transitivity).

Kripke Semantics for GL

GL-frame: $\mathcal{F}=\langle W, R\rangle$, where

1. R is transitive;
2. there are no infinite chains $x_{0} R x_{1} R x_{2} R \ldots$

Kripke Semantics for GL

GL-frame: $\mathcal{F}=\langle W, R\rangle$, where

1. R is transitive;
2. there are no infinite chains $x_{0} R x_{1} R x_{2} R \ldots$

Finite GL-frames $=$ transitive irreflexive frames.

Kripke Semantics for GL

GL-frame: $\mathcal{F}=\langle W, R\rangle$, where

1. R is transitive;
2. there are no infinite chains $x_{0} R x_{1} R x_{2} R \ldots$

Finite GL-frames $=$ transitive irreflexive frames.
GL-model: $\mathcal{M}=\langle\mathcal{F}, v\rangle$.

Kripke Semantics for GL

GL-frame: $\mathcal{F}=\langle W, R\rangle$, where

1. R is transitive;
2. there are no infinite chains $x_{0} R x_{1} R x_{2} R \ldots$

Finite GL-frames $=$ transitive irreflexive frames.
GL-model: $\mathcal{M}=\langle\mathcal{F}, v\rangle$.

Theorem
GL is sound and complete:
$\mathbf{G L}=\log ($ all $\mathbf{G L}$-frames $)=\log$ (all finite $\mathbf{G L}$-frames) .

Sequent Calculus $\mathbf{G L}^{G}$

Tight negation: formulae are built from $\perp, T, p_{1}, \bar{p}_{1}, p_{2}, \bar{p}_{2}$, \ldots using $\vee, \wedge, \square, \diamond(=\neg \square \neg)$.
Negation (\neg) and implication (\rightarrow) are meta-operations.
One-side sequents: a sequent Γ is a finite set of formulae. (Informal meaning: Γ means $\bigvee_{A \in \Gamma} A$.)

Axioms: $\quad \top \quad p, \bar{p}$
Inference rules:

$$
\begin{gathered}
\frac{\Gamma, A_{1}\left\ulcorner, A_{2}\right.}{\Gamma, A_{1} \wedge A_{2}}(\wedge) \quad \frac{\Gamma, A_{i}}{\Gamma, A_{1} \vee A_{2}}(\vee) \quad \frac{\diamond \Gamma, \Gamma, \diamond \neg A, A}{\diamond \Gamma, \square A}(\mathrm{Löb}) \\
\frac{\Gamma}{\Gamma, \Delta}(\text { weak }) \quad \frac{\Gamma, A \Delta, \neg A}{\Gamma, \Delta}(\mathrm{cut})
\end{gathered}
$$

Cut Elimination and Kripke Completeness

Theorem
T.F.A.E.:

1. $\mathbf{G L} \vdash A$;
2. $A \in \log (a l l \mathbf{G L}$-frames);
3. $A \in \log ($ all finite $\mathbf{G L}$-frames);
4. $\mathrm{GL}^{G} \vdash\{A\}$ without (cut);
5. $\mathbf{G L}^{G} \vdash\{A\}$.

Cut Elimination and Kripke Completeness

Theorem
T.F.A.E.:

1. $\mathbf{G L} \vdash A$;
2. $A \in \log (a l l \mathbf{G L}$-frames);
3. $A \in \log ($ all finite $\mathbf{G L}$-frames);
4. $\mathrm{GL}^{G} \vdash\{A\}$ without (cut);
5. $\mathbf{G L}^{G} \vdash\{A\}$.

The only non-trivial step is $(3) \Rightarrow(4)$.

Models from Sequents

Saturated sequent Γ :

1. if $A \vee B \in \Gamma$, then $A \in \Gamma$ and $B \in \Gamma$;
2. if $A \wedge B \in \Gamma$, then $A \in \Gamma$ or $B \in \Gamma$.

Models from Sequents

Saturated sequent Γ :

1. if $A \vee B \in \Gamma$, then $A \in \Gamma$ and $B \in \Gamma$;
2. if $A \wedge B \in \Gamma$, then $A \in \Gamma$ or $B \in \Gamma$.

Saturation lemma: if $\mathbf{G L}^{G} \nvdash \Gamma$ without (cut), then there exists a saturated $\Gamma^{\prime} \supseteq \Gamma$ such that $G L^{G} \nvdash \Gamma^{\prime}$ and $\Gamma^{\prime} \subseteq \operatorname{SubFm}(\Gamma)$.

Models from Sequents

Saturated sequent Γ :

1. if $A \vee B \in \Gamma$, then $A \in \Gamma$ and $B \in \Gamma$;
2. if $A \wedge B \in \Gamma$, then $A \in \Gamma$ or $B \in \Gamma$.

Saturation lemma: if $\mathbf{G L}^{G} \nvdash \Gamma$ without (cut), then there exists a saturated $\Gamma^{\prime} \supseteq \Gamma$ such that $\mathbf{G L}{ }^{G} \nvdash \Gamma^{\prime}$ and $\Gamma^{\prime} \subseteq \operatorname{SubFm}(\Gamma)$.

Counter-model.

- Let $\mathbf{G L}^{G} \nvdash \Gamma_{0}$ and let Φ be $\operatorname{SubFm}(\Gamma)$ closed under \neg.
- Let W be the set of all non-derivable saturated sequents $\Gamma^{\prime} \subseteq \Phi$.
- 「R , if

1. if $\forall B \in \Gamma$, then $B, \Delta B \in \Delta$;
2. there exists $\diamond B \in \Delta$ such that $\forall B \notin \Gamma$.

Models from Sequents

Saturated sequent Γ :

1. if $A \vee B \in \Gamma$, then $A \in \Gamma$ and $B \in \Gamma$;
2. if $A \wedge B \in \Gamma$, then $A \in \Gamma$ or $B \in \Gamma$.

Saturation lemma: if $\mathbf{G L}^{G} \nvdash \Gamma$ without (cut), then there exists a saturated $\Gamma^{\prime} \supseteq \Gamma$ such that $\mathbf{G L}{ }^{G} \nvdash \Gamma^{\prime}$ and $\Gamma^{\prime} \subseteq \operatorname{SubFm}(\Gamma)$.

Counter-model.

- Let $\mathbf{G L}^{G} \nvdash \Gamma_{0}$ and let Φ be $\operatorname{SubFm}(\Gamma)$ closed under \neg.
- Let W be the set of all non-derivable saturated sequents $\Gamma^{\prime} \subseteq \Phi$.
- 「R , if

1. if $\forall B \in \Gamma$, then $B, \diamond B \in \Delta$;
2. there exists $\diamond B \in \Delta$ such that $\forall B \notin \Gamma$.
$\langle W, R\rangle$ is a GL-frame.

Models from Sequents

Valuation: $v(\Gamma, p)=1$ iff $p \notin \Gamma$.
$\mathcal{M}=\langle W, R, v\rangle$
Main Semantic Lemma. If $A \in \Gamma$, then $\mathcal{M}, \Gamma \nvdash A$.
Corollary: completeness. Saturate $\Gamma_{0} \supseteq \Gamma_{0}^{\prime}$, then $\mathcal{M}, \Gamma_{0}^{\prime} \Vdash \bigvee \Gamma_{0}$.
Proof: induction on A.

Models from Sequents

Interesting induction cases:

- $A=\diamond B \in \Gamma$.

Then for any $\Delta \in R(\Gamma)$ we have $B \in \Delta$, therefore (IH) $\Delta \Downarrow B$, therefore「 $\forall \Delta B$.

Models from Sequents

Interesting induction cases:

- $A=\diamond B \in \Gamma$.

Then for any $\Delta \in R(\Gamma)$ we have $B \in \Delta$, therefore (IH)
$\Delta \Downarrow B$, therefore「 $\forall \Delta B$.

- $A=\square B \in \Gamma$.

Let $\Delta=\{C, \diamond C \mid \diamond C \in \Gamma\} \cup\{\diamond \neg B, B\}$.
Claim: $\forall \Delta$. Otherwise:

$$
\frac{\Delta}{\frac{\{\diamond C \mid C \in \Gamma\}, \square B}{\Gamma}}\left(\begin{array}{l}
(\text { Löb }) \\
(\text { weak })
\end{array}\right.
$$

Saturate $\Delta \subseteq \Delta^{\prime}$. We have $\Gamma R \Delta^{\prime}$ (irreflexivity: $\diamond \neg B \in \Delta^{\prime}$, $\notin \Gamma)$.

Arithmetical Interpretation of GL

$v:$ modal formulae \rightarrow closed arithmetical formulae

- $v\left(p_{i}\right)$ arbitrary;
- $v(A \vee B)=v(A) \vee v(B), v(A \wedge B)=v(A) \wedge v(B)$, $v(A \rightarrow B)=v(A) \rightarrow v(B), v(\perp)=\perp$;
- $v(\square A)=\operatorname{Pr}_{\mathbf{P A}}(\ulcorner A\urcorner)=\exists y \operatorname{Prf}_{\mathbf{P A}}(y,\ulcorner A\urcorner)$.

Arithmetical Interpretation of GL

$v:$ modal formulae \rightarrow closed arithmetical formulae

- $v\left(p_{i}\right)$ arbitrary;
- $v(A \vee B)=v(A) \vee v(B), v(A \wedge B)=v(A) \wedge v(B)$, $v(A \rightarrow B)=v(A) \rightarrow v(B), v(\perp)=\perp$;
- $v(\square A)=\operatorname{Pr}_{\mathbf{P A}}(\ulcorner A\urcorner)=\exists y \operatorname{Prf}_{\mathbf{P A}}(y,\ulcorner A\urcorner)$.

Autoprovability logic: $\mathbb{P L}_{\mathbf{P A}}(\mathbf{P A})=\{A \mid \mathbf{P A} \vdash v(A)$ for any $v\}$.

Arithmetical Interpretation of GL

$v:$ modal formulae \rightarrow closed arithmetical formulae

- $v\left(p_{i}\right)$ arbitrary;
- $v(A \vee B)=v(A) \vee v(B), v(A \wedge B)=v(A) \wedge v(B)$, $v(A \rightarrow B)=v(A) \rightarrow v(B), v(\perp)=\perp$;
- $v(\square A)=\operatorname{Pr}_{\mathbf{P A}}(\ulcorner A\urcorner)=\exists y \operatorname{Prf}_{\mathbf{P A}}(y,\ulcorner A\urcorner)$.

Autoprovability logic: $\mathbb{P L}_{\mathbf{P A}}(\mathbf{P A})=\{A \mid \mathbf{P A} \vdash v(A)$ for any $v\}$.

Theorem (Solovay)
$\mathbb{P L}_{\mathbf{P A}}(\mathbf{P A})=\mathbf{G L}$.

Arithmetical Interpretation of GL

$v:$ modal formulae \rightarrow closed arithmetical formulae

- $v\left(p_{i}\right)$ arbitrary;
- $v(A \vee B)=v(A) \vee v(B), v(A \wedge B)=v(A) \wedge v(B)$, $v(A \rightarrow B)=v(A) \rightarrow v(B), v(\perp)=\perp$;
- $v(\square A)=\operatorname{Pr}_{\mathbf{P A}}(\ulcorner A\urcorner)=\exists y \operatorname{Prf}_{\mathbf{P A}}(y,\ulcorner A\urcorner)$.

Autoprovability logic: $\mathbb{P L}_{\mathbf{P A}}(\mathbf{P A})=\{A \mid \mathbf{P A} \vdash v(A)$ for any $v\}$.

Theorem (Solovay)
$\mathbb{P L}_{\mathbf{P A}}(\mathbf{P A})=\mathbf{G L}$.
Correctness (\supseteq) is due to Gödel-II (formalised Löb's theorem and Hilbert - Bernays conditions).

The Refugee Function

GL $\vdash A$
\mathcal{M} is the Kripke countermodel with $W=\{1, \ldots, n\}$
(1 is the root, $\mathcal{M}, 1 \Vdash A$).

The Refugee Function

GL $\vdash A$
\mathcal{M} is the Kripke countermodel with $W=\{1, \ldots, n\}$
(1 is the root, $\mathcal{M}, 1 \Downarrow A$).
Add a new root 0 , with all variables false.

The Refugee Function

GL \vdash A
\mathcal{M} is the Kripke countermodel with $W=\{1, \ldots, n\}$
(1 is the root, $\mathcal{M}, 1 \Downarrow \nmid$).
Add a new root 0 , with all variables false.

Refugee function:

$$
\begin{aligned}
& h(0)=0 \\
& h(t+1)=\left\{\begin{array}{l}
z, \text { if } h(t) R z \text { and } \operatorname{Prf} \\
\mathbf{P A}\left(t+1,\left\ulcorner\neg S_{z}\right\urcorner\right) \\
h(t) \text { otherwise }
\end{array}\right. \\
& S_{x}=" \lim _{t \rightarrow \infty} h(t)=x "=\exists t_{0} \forall t>t_{0} h(t)=x
\end{aligned}
$$

(Defined using the fixpoint construction.)

The Refugee Function: Properties

- PA $\vdash t_{1}<t_{2} \rightarrow\left(h\left(t_{1}\right) R h\left(t_{2}\right) \vee h\left(t_{1}\right)=h\left(t_{2}\right)\right)$

The Refugee Function: Properties

- PA $\vdash t_{1}<t_{2} \rightarrow\left(h\left(t_{1}\right) R h\left(t_{2}\right) \vee h\left(t_{1}\right)=h\left(t_{2}\right)\right)$
- PA $\vdash \bigvee_{x \in W} S_{x}$

The Refugee Function: Properties

- PA $\vdash t_{1}<t_{2} \rightarrow\left(h\left(t_{1}\right) R h\left(t_{2}\right) \vee h\left(t_{1}\right)=h\left(t_{2}\right)\right)$
- PA $\vdash \bigvee_{x \in W} S_{x}$
- PA $\vdash \neg\left(S_{x} \wedge S_{y}\right)$ for $x \neq y$

The Refugee Function: Properties

- PA $\vdash t_{1}<t_{2} \rightarrow\left(h\left(t_{1}\right) R h\left(t_{2}\right) \vee h\left(t_{1}\right)=h\left(t_{2}\right)\right)$
- PA $\vdash \bigvee_{x \in W} S_{x}$
- PA $\vdash \neg\left(S_{x} \wedge S_{y}\right)$ for $x \neq y$
- PA $\vdash S_{x} \rightarrow \neg \operatorname{Pr}_{\mathrm{PA}}\left(\left\ulcorner\neg S_{y}\right\urcorner\right)$, if $x R y$ (otherwise there exists an arbitrarily long proof, serving as a visa to migrate to y)

The Refugee Function: Properties

- PA $\vdash t_{1}<t_{2} \rightarrow\left(h\left(t_{1}\right) R h\left(t_{2}\right) \vee h\left(t_{1}\right)=h\left(t_{2}\right)\right)$
- PA $\vdash \bigvee_{x \in W} S_{x}$
- PA $\vdash \neg\left(S_{x} \wedge S_{y}\right)$ for $x \neq y$
- PA $\vdash S_{x} \rightarrow \neg \operatorname{Pr}_{\mathrm{PA}}\left(\left\ulcorner\neg S_{y}\right\urcorner\right)$, if $x R y$ (otherwise there exists an arbitrarily long proof, serving as a visa to migrate to y)
- If $x \neq 0$, then $\mathbf{P A} \vdash S_{x} \rightarrow \operatorname{Pr} \mathbf{P A}\left(\left\ulcorner\underset{y \in R(x)}{\bigvee} S_{y}\right\urcorner\right)$.

The Refugee Function: Properties

- PA $\vdash t_{1}<t_{2} \rightarrow\left(h\left(t_{1}\right) R h\left(t_{2}\right) \vee h\left(t_{1}\right)=h\left(t_{2}\right)\right)$
- PA $\vdash \bigvee_{x \in W} S_{x}$
- PA $\vdash \neg\left(S_{x} \wedge S_{y}\right)$ for $x \neq y$
- PA $\vdash S_{x} \rightarrow \neg \operatorname{Pr}_{\mathrm{PA}}\left(\left\ulcorner\neg S_{y}\right\urcorner\right)$, if $x R y$ (otherwise there exists an arbitrarily long proof, serving as a visa to migrate to y)
- If $x \neq 0$, then $\mathrm{PA} \vdash S_{x} \rightarrow \operatorname{Pr}_{\mathbf{P A}}\left(\left\ulcorner\underset{y \in R(x)}{\bigvee} S_{y}\right\urcorner\right)$.

$$
v(p)=\bigvee_{x \nmid-p} S_{x}
$$

The Refugee Function: Properties

- PA $\vdash t_{1}<t_{2} \rightarrow\left(h\left(t_{1}\right) R h\left(t_{2}\right) \vee h\left(t_{1}\right)=h\left(t_{2}\right)\right)$
- PA $\vdash \bigvee_{x \in W} S_{x}$
- PA $\vdash \neg\left(S_{x} \wedge S_{y}\right)$ for $x \neq y$
- PA $\vdash S_{x} \rightarrow \neg \operatorname{Pr}_{\mathrm{PA}}\left(\left\ulcorner\neg S_{y}\right\urcorner\right)$, if $x R y$ (otherwise there exists an arbitrarily long proof, serving as a visa to migrate to y)
- If $x \neq 0$, then $\mathbf{P A} \vdash S_{x} \rightarrow \operatorname{Pr} \mathbf{P A}\left(\left\ulcorner\underset{y \in R(x)}{\bigvee} S_{y}\right\urcorner\right)$.

$$
v(p)=\bigvee_{x \| p} S_{x}
$$

Lemma

For every $x \neq 0$ and every modal formula A :

1. if $x \Vdash A$, then $\mathbf{P A} \vdash S_{x} \rightarrow v(A)$;
2. if $x \Vdash$, then $\mathrm{PA} \vdash S_{x} \rightarrow \neg v(A)$.
